首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study reports the competitive adsorptive removal of cadmium (Cd(II)) and zinc (Zn(II)) ions from binary systems using rice husk ash (RHA), a waste obtained from the rice husk-fired furnaces, as an adsorbent. The initial pH (pH0) affects significantly the capacity of RHA for adsorbing the metallic ions in the aqueous solution. The pH0  6.0 is found to be the optimum for the removal of Cd(II) and Zn(II) ions by RHA. The single ion equilibrium adsorption from the binary solution is better represented by the non-competitive Redlich–Peterson (R–P) and the Freundlich models than by Langmuir model in the initial metal concentration range of 10–100 mg/l. The adsorption of Zn(II) ion is more than that of Cd(II) ion, and this trend is in agreement with the single-component adsorption data. The equilibrium metal removal decreases with increasing concentrations of the other metal ion and the combined effect of Cd(II) and Zn(II) ions on RHA is generally found to be antagonistic. Non-modified Langmuir, modified Langmuir, extended-Langmuir, extended-Freundlich, Sheindorf–Rebuhn–Sheintuch (SRS), non-modified R–P and modified R–P adsorption models were tested to find the most appropriate competitive adsorption isotherm for the binary adsorption of Cd(II) and Zn(II) ions onto RHA by minimizing the Marquardt's percent standard deviation (MPSD) error function. The extended-Freundlich model satisfactorily represents the adsorption equilibrium data of Cd(II) and Zn(II) ions onto RHA.  相似文献   

2.
A low-cost adsorbent and environmentally friendly adsorbent from Carpobrotus edulis plant was used for the removal of NO(3)(-), H(2)PO(4)(-), Pb(2+) and Cd(2+) ions from single, binary and multi-component systems. The efficiency of the adsorbent was studied using batch adsorption technique under different experimental conditions by varying parameters such as pH, initial concentration and contact time. In single component systems, the dried C. edulis has the highest affinity for Pb(2+), followed by NO(3)(-), Cd(2+) and H(2)PO(4)(-), with adsorption capacities of 175mg/g, 125mg/g, 28mg/g and 26mg/g, respectively. These results showed that the adsorption of NO(3)(-) and H(2)PO(4)(-) ions from single and binary component systems can be successfully described by Langmuir and Freundlich isotherms. Freundlich adsorption model, showed the best fit to the single and binary experimental adsorption data. These results also indicated that the adsorption yield of Pb(2+) ion was reduced by the presence of Cd(2+) ion in binary metal mixture. The competitive adsorption of NO(3)(-), H(2)PO(4)(-), Pb(2+) and Cd(2+) ions on dried C. edulis plant shows that NO(3)(-) and H(2)PO(4)(-) anions are able to adsorb on different free binding sites and Pb(2+) and Cd(2+) cations are able to adsorb on the same active sites of C. edulis particles. The dried C. edulis was found to be efficient in removing nitrate, phosphate, cadmium and lead from aqueous solution as compared to other adsorbents already used for the removal of these ions.  相似文献   

3.
In this study, experimental measurements have been made on the batch adsorption of cadmium and lead ions from aqueous solutions using poly(guanidine modified 2‐acrylamido‐2‐methylpropan sulfonic acid/acrylic acid/N‐vinylpyrrolidone/2‐Hydroxyethyl methacrylate), P(AMPSG/AAc/NVP/HEMA) hydrogels. The guanidyl end group bearing AMPSG monomer was synthesized from the reaction of AMPS and guanidine. The hydrogels were prepared by UV‐curing technique. The morphology of the dry H10‐hydrogel sample was examined by SEM. The influence of the uptake conditions, such as pH, functional monomer per cent, contact time, initial feed concentration, and foreign metal ions on the metal ion binding capacity of hydrogel, was also tested. The selectivity of the hydrogel toward the different metal ions tested was Hg(II) > Pb(II) > Au(III) > Cd(II). The adsorption isotherm models were applied to the experimental data, and it was seen that the Langmuir isotherm model was the best fit for the adsorption of Cd(II) and Pb(II) ions on P(AMPSG/AAc/NVP/HEMA) hydrogel. It was found that adsorbed lead and cadmium ions on P(AMPSG/AAc/NVP/HEMA) hydrogel can be effectively desorbed by acid leaching and the regenerated P(AMPSG/AAc/NVP/HEMA) hydrogel can be reused almost five times less without any loss of adsorption capacity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
A new biosorbent loquat (Eriobotrya japonica) leaves waste for removing cadmium (II) ions from aqueous solutions has been investigated. The extent of biosorption of Cd(II) ions was found to be dependent on solution pH, initial cadmium ion concentrations, biosorbent dose, contact time, and temperature. The experimental equilibrium biosorption data were analyzed by four widely used two-parameters Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich isotherm equations. Langmuir and Temkin isotherm models provided a better fit with the experimental data than Freundlich and Dubinin–Radushkevich isotherm models by high correlation coefficients R2. The thermodynamic analysis indicated that the biosorption behavior of cadmium ions onto loquat leaves (LL) biosorbent was an endothermic process, resulting in higher biosorption capacities at higher temperatures. The negative sign values of ΔG0 and positive values of ΔH0 revealed that the biosorption process was spontaneous and endothermic. Kinetic studies showed that pseudo-second order described the biosorption experimental data better than the pseudo-first order kinetic model. The (LL) were successfully used for the biosorption of cadmium ions from contaminated water sources.  相似文献   

5.
The sorption behaviour of 2.5 × 10−5 M solution of Cd(II) on polyurethane foam (PUF) from iodide medium have been investigated. The conditions were optimized from aqueous solutions of different pH (1-10) and of acids of varied concentration (0.01-1.0 M). The maximum concentration of KI was found to be 0.24 M and equilibration time was established to be 20 min. The data successfully followed the Freundlich and Dubinin-Radushkevich (D-R) isotherms at low metal ion concentration while Langmuir isotherm followed at higher metal ion concentration. The Freundlich parameter 1/n = 0.66 ± 0.02 have been evaluated whereas D-R isotherm yields the sorption free energy E = 10.5 ± 0.1 kJ mol−1 indicating ion exchange type chemisorption. The monolayer coverage (XL) constant of Langmuir isotherm was found to be 23.7 ± 0.4 mg g−1. The numerical values of thermodynamics parameters enthalpy (ΔH), entropy (ΔS) and Gibbs free energy (ΔG) indicated the endothermic and spontaneous nature of sorption. The Scatchard plot analysis was tested to evaluate the binding sites of the PUF and stability constants of sorption were determined. On the basis of these parameters, the sorption mechanism was discussed. Among the foreign ions tested, Pb(II), Hg(II), cyanide and nitrite should be absent. The clean separation of Cd(II) from Zn(II) ions in the ratio 1:250, respectively, was achieved by column chromatography.  相似文献   

6.
A novel composite adsorbent, silica aerogel activated carbon was synthesized by sol-gel process at ambient pressure drying method. The composite was characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and Nitrogen adsorption/desorption isotherms (BET).In the present study, the mentioned adsorbent was used moderately for the removal of cadmium ions from aqueous solutions and was compared with two other adsorbents of cadmium, activated carbon and silica aerogel. The experiments of Cd adsorption by adsorbents were performed at different initial ion concentrations, pH of the solution, adsorption temperature, adsorbent dosage and contact time. Moreover, the optimum pH for the adsorption was found to be 6.0 with the corresponding adsorbent dosage level of 0.1 g at 60 °C temperature. Subsequently, the equilibrium was achieved for Cd with 120 min of contact time.Consequently, the results show that using this composite adsorbent could remove more than 60% of Cd under optimum experimental conditions. Langmuir and Freundlich isotherm model was applied to analyze the data, in which the adsorption equilibrium data were correlated well with the Freundlich isotherm model and the equilibrium adsorption capacity (qe) was found to be 0.384 mg/g in the 3 mg/L solution of cadmium.  相似文献   

7.
本文用恢复电位法、荧光分光光度法及粘度法研究了镉(Ⅱ)与牛血清白蛋白(BSA)的配位平衡和pH的影响。结果表明BSA有两类镉结合部位(2个强结合和10个弱结合部位)。Cd—BSA配位反应受pH影响,在近中性pH范围Cd(Ⅱ)与BSA结合未接近饱和时,以CURFIT程序对结合曲线拟合发现,每摩尔BSA平均结合Cd(Ⅱ)摩尔数的对数值与游离镉浓度的对数间成线性关系,进一步用Marguardt法处理得到Cd(Ⅱ)与BSA结合平衡方程式:N =K[Cd2+]m,K和m均为pH函数。构象研究表明H+和Cd(Ⅱ)的结合都能引起BSA构象改变。用凝胶色谱法测定了Zn(Ⅱ)、Ca(Ⅱ)、吐温—80和十二烷基硫酸钠(SDS)对Cd—BSA结合的影响。Zn(Ⅱ)可以竞争Cd(Ⅱ)在BSA上结合部位使Cd(Ⅱ)活动化。SDS能够有效抑制Cd(Ⅱ)与BSA结合,这种作用可能与SDS引起BSA构象改变有关。  相似文献   

8.
Removal of lead from aqueous solutions by adsorption onto coconut-shell carbon was investigated. Batch adsorption experiments were performed to find out the effective lead removal at different metal ion concentrations. Adsorption of Pb2+ ion was strongly affected by pH. The coconut-shell carbon (CSC) exhibited the highest lead adsorption capacity at pH 4.5. Isotherms for the adsorption of lead on CSC were developed and the equilibrium data fitted well to the Langmuir, Freundlich, and Tempkin isotherm models. At pH 4.5, the maximum lead adsorption capacity of CSC estimated with the Langmuir model was 26.50 mg g(-1) adsorbent. Energy of activation (Ea) and thermodynamic parameters such as DeltaG, DeltaH, and DeltaS were evaluated by applying the Arrhenius and van't Hoff equations. The thermodynamics of Pb(II) on CSC indicates the spontaneous and endothermic nature of adsorption. Quantitative desorption of Pb(II) from CSC was found to be 75% which facilitates the sorption of metal by ion exchange.  相似文献   

9.
Adsorption-desorption isotherms of bovine beta-lactoglobulin A (beta-lact A) on a weakly hydrophobic stationary phase (C1-ether) were measured by frontal analysis. The adsorption isotherms obtained at different pH were found to be dramatically different in shape, column capacity and desorption reversibility. At pH 4.5, an S-shaped adsorption isotherm was observed whereas at pH 6.0 a Langmuir isotherm was found. In addition, the desorption isotherm at pH 6.0 was found to overlap with the adsorption isotherm, and the adsorption-desorption process of beta-lact A under this condition could be characterized by a fully reversible Langmuir model. The desorption isotherm at pH 4.5, however, did not retrace the adsorption isotherm, resulting in hysteresis loops. A higher aggregate (tetramer) of beta-lact A is shown to be in an equilibrium with the beta-lact A protomer (dimer) at pH 4.5 whereas the dimer alone is predominant at pH 6.0. It is further shown that changes in the absorption coefficient between the adsorption and the desorption cycles for the tetramer at pH 4.5 can account for the hysteresis. The results demonstrate that pH can be a sensitive parameter in protein adsorption isotherm behavior and ultimately the behavior of species in preparative-scale chromatography.  相似文献   

10.
《Analytical letters》2012,45(18):3443-3456
Abstract

The modification of cross‐linked polyacrylamide (CPAAm) and incorporation of methyl thiourea (MeTU) or phenyl thiourea (PhTU) group were utilized in the preparation of two new chelating resins CPAAm‐EDA‐MeTU (resin I) and CPAAM‐EDA‐PhTU (resin II), [EDA=ethylenediamine]. The prepared resins were characterized by elemental analysis and IR spectroscopy. The sorption behaviors of Cd(II), Pb(II), and Zn(II) ions on the prepared resins were studied and the optimum sorption conditions for the tested metal ions were determined. The optimum pH value for the sorption of Cd(II) and Zn(II) ions on both resins I and II was ranged between 7–8. The prepared new resins show very little affinity towards Pb(II) ion. The maximum experimental sorption capacities of resin I towards Cd(II) and Zn(II) ions were 3.2 and 0.6 mmol g?1, respectively, and that of resin II were and 0.6 mmol g?1 in the same prescribed order. Langmuir and Freundlich isotherm constants and correlation coefficients for the present system were calculated and compared. The thermodynamic parameters (ΔG°, ΔH°, and ΔS°) for cadmium and zinc sorption on the prepared resins were also determined from the temperature dependence.  相似文献   

11.
The adsorption of Cd(II) and Co(II) onto goethite was measured at five temperatures between 10 and 70 degrees C. For both cations the amount adsorbed at any given pH increased as the temperature was increased. Cd(II) adsorbed at a slightly lower pH at each temperature than Co(II). Adsorption isotherms at pH 7.00 for Cd(II) could be fitted closely by a simple Langmuir model, but a two-site Langmuir model was needed for Co(II). Potentiometric titrations of goethite suspensions in the presence and absence of added cation could be modeled closely by a constant-capacitance surface complexation model that assumed the adsorption reactions M2+ + SOH ⇋ SOM+ + H+ and M2+ + SOH + H2O ⇋ SOMOH + 2H+, where M represents Cd or Co. This model also fitted the experimental data from the adsorption edge and adsorption isotherm experiments. Thermodynamic parameters estimated from both Langmuir and surface complexation models showed that the adsorption of both metals was endothermic. Values obtained for the adsorption enthalpies from both modeling schemes were similar for both cations. Estimates of the adsorption entropies were model-dependent: Langmuir parameters yielded positive entropies, while some of the surface complexation parameters generated negative adsorption entropies. Copyright 1999 Academic Press.  相似文献   

12.
In this study, the interaction of the anion of quinapril (QUIN), angiotensin converting enzyme (ACE) inhibitor, with cationic surfactant cetyltrimethylammonium bromide (CTAB) was investigated. The effect of cationic micelles on the spectroscopic and acid-base properties of QUIN was studied at pH 8. The binding of QUIN anion to CTAB micelles implied a shift in drug acidity constant (pK(a)(water)-pK(a)(micelle)=1.39) proving the great affinity of negatively charged QUIN ion for the positively charged CTAB micelle surface. The strong dependence of the partition coefficient K(x) on QUIN concentration, obtained by using pseudo-phase model, is consistent with an adsorption-like phenomenon. From the dependence of differential absorbance at lambda=272 nm on CTAB concentration, by using mathematical model that treats the solubilization of QUIN anion as its binding to specific sites in the micelles (Langmuir adsorption isotherm), the binding constant K(b)=(2.3+/-0.4)x10(3) mol(-1)dm(3) was obtained. QUIN-CTAB binding constant was also calculated from micellar liquid chromatography (MLC) and this method was found to be not accurate enough for its determination.  相似文献   

13.
The biosorption of nickel(II) and copper(II) ions from aqueous solution by dried Streptomyces coelicolor A3(2) was studied as a function of concentration, pH and temperature. The optimum pH range for nickel and copper uptake was 8.0 and 5.0, respectively. At the optimal conditions, metal ion uptake was increased as the initial metal ion concentration increased up to 250 mg l(-1). At 250 mg l(-1) copper(II) ion uptake was 21.8% whereas nickel(II) ion uptake was found to be as high as 7.3% compared to those reported earlier in the literature. Metal ion uptake experiments were carried out at different temperatures where the best ion uptake was found to be at 25 degrees C. The characteristics of the adsorption process were investigated using Scatchard analysis at 25 degrees C. Scatchard analysis of the equilibrium binding data for metal ions on S. coelicolor A3(2) gave rise to a linear plot, indicating that the Langmuir model could be applied. However, for nickel(II) ion, divergence from the Scatchard plot was evident, consistent with the participation of secondary equilibrium effects in the adsorption process. Adsorption behaviour of nickel(II) and copper(II) ions on the S. coelicolor A3(2) can be expressed by both the Langmuir and Freundlich isotherms. The adsorption data with respect to both metals provide an excellent fit to the Freundlich isotherm. However, when the Langmuir isotherm model was applied to these data, a good fit was obtained for the copper adsorption only and not for nickel(II) ion.  相似文献   

14.
The removal of heavy metals, such as Cu(II), Cd(II) and Cr(III) from aqueous solution was studied using Chorfa silt material (Mascara, Algeria). The main constituents of silt sediment are quartz, calcite and mixture of clays. The experimental data were described using Freundlich, Langmuir, Dubinin–Radushkevich (D–R) and Langmuir–Freundlich models. The adsorbed amounts of chromium and copper ions were very high (95% and 94% of the total concentration of the metal ions), whereas cadmium ion was adsorbed in smaller (55%) amounts. The Langmuir–Freundlich isotherm model was the best to describe the experimental data. The maximum sorption capacity was found to be 26.30, 11.76 and 0.35 mg/g for Cr3+, Cu2+ and Cd2+, respectively. The results of mean sorption energy, E (kJ/mol) calculated from D–R equation, confirmed that the adsorption of copper, chromium and cadmium on silt is physical in nature.  相似文献   

15.
With increasing industrial development, heavy metal pollution, e.g., cadmium (Cd) pollution, is increasingly serious in soil and water environments. This study investigated the sorption performance of nano-montmorillonite (NMMT) for Cd ions. Adsorption experiments were carried out to examine the effects of the initial metal ion concentration (22.4–224 mg/L), pH (2.5–7.5), contact time (2–180 min) and temperature (15–40 °C). A simulated acid rain solution was prepared to study the desorption of Cd adsorbed on NMMT. After the adsorption or desorption process, the supernatant was analyzed using a flame atomic absorption spectrometry method. The Cd removal rate increased as the pH and contact time increased but decreased as the initial metal ion concentration increased. The maximum adsorption capacity was estimated to be 17.61 mg/g at a Cd2+ concentration of 22.4 mg/L. The sorption process can be described by both the Langmuir and Freundlich models, and the kinetic studies revealed that the pseudo-second-order model fit the experimental data. The Cd desorption rate when exposed to simulated acid rain was less than 1%. NMMT possesses a good adsorption capacity for Cd ions. Additionally, ion exchange was the main adsorption mechanism, but some precipitation or surface adsorption also occurred.  相似文献   

16.
A series of ion-exchange equilibrium experiments were completed and analyzed by a mass action model. The isotherms at various counter-ion concentrations are regressed to determine the average number of binding sites, Z, the mass action constant, K, and the effective capacity of the exchanger, Pm. The estimates for Pm are 1-10 mmol of protein adsorbed per liter of packed Sepharose exchanger, in agreement with values determined from fitting the Langmuir isotherms. A geometric model, developed to relate the charge distribution of the exchanger and the size of the protein to the protein capacity, also confirms the estimates of Pm. The Z values estimated (and confirmed with an independent slope method) range from 0.8 to 3.6, indicating that most of the ionized sites on the protein do not undergo ion exchange. Geometric model estimates of exchanger sites covered by a protein at maximum surface coverage show that only 1-32% of the sites actually undergo ion exchange. This result indicates that adsorbed protein molecules "block" many exchanger sites, preventing other molecules from ion exchanging at those sites. This high degree of blocking by proteins also indicates that there is an excess of exchanger sites, as evidenced by Z showing no dependence on charge separation distance over the range 6-10 A. Scatchard pots of the equilibrium data indicate that there is competition between at least two different binding forms of each protein studied. For the high-affinity systems, cooperative binding was observed at low exchanger loading; the character then changed to heterogeneous competitive binding as the exchanger loading increased. The effect on an isotherm plot is a subtle but systematic deviation from the Langmuir and mass action models. More important, the competition means that Z represents an average for competing binding forms and, as such, Z can be fractional.  相似文献   

17.
In the present study, simultaneous adsorption of quinoline and pyridine onto adsorbents such as granular activated carbon (GAC) and bagasse fly ash (BFA) from pyridine–quinoline binary aqueous solution was studied at various temperatures (288–318 K). Gathered equilibrium adsorption data were further analysed using various multicomponent competitive isotherm models such as non-modified and modified competitive Langmuir isotherms, extended-Langmuir isotherm, extended-Freundlich model, Sheindorf–Rebuhn–Sheintuch (SRS) model, and non-modified and modified competitive Redlich–Peterson isotherm model. It was observed that increase in pyridine concentration decreased the total adsorption yield and the individual adsorption yield for both the quinoline and pyridine for both the adsorbents GAC and BFA at all the temperatures studied. Identical trend was observed during the equilibrium uptake of pyridine on to GAC and BFA with an increase in quinoline concentration. The extended-Freundlich model satisfactorily represented the binary adsorption equilibrium data of quinoline and pyridine onto GAC and BFA.  相似文献   

18.
The new chelate resins, abbreviated as PNBMZs and PBBMZs based on epoxide polymer, were synthesized by polycondensation of N,N-diglycidyl-4-glycidyloxyaniline or 1,4-bis(2,3-epoxypropyl)benzene with the primary amine group of 1,3-bis(benzimidazol-2yl)propylamine (BBPAH). The ion exchangers contain 2.71-3.23 mmol of the ligand contents per gram of the resin. Batch extraction capacities were determined for the metal chloride salts in buffer solutions in the pH range from -1 to 6.0. The chelate resins were very selective for Cu^2+, Zn^2+, Cd^2+ in the presence of other divalent transition metal ions. The maximum uptake capacities of PNBMZ (synthetic molar ratio = 1:1.5) under non-competitive condition were found to be 0.94 mmol/g for Cu^2+ at pH = 2, 1.3 mmol/g for Cd^2+ at pH = 1 and 1.75 mmol/g for Zn^2+ at pH = -1 respectively. While in the case of PBBMZ, it was 1.39 mmol/g for Cd〉 at pH = 1. The metal-uptake behaviors for both of them showed strong pH dependence, and their extraction capacities increase with decreasing pH. The uptake of Cu^2+ by the resin PNBMZs at pH = 1 was found to be rather fast with t1/2 = 18 min. Metal-uptake experiments under competitive conditions also confirm that the chelate resins have a high selectivity for Cu^2+, Zn^2+, Cd^2+ and the contrary pH dependence.  相似文献   

19.
The adsorption properties of bovine serum albumin (BSA) on pure titanium (99.99%+) were studied by time-of-flight secondary ion mass spectrometry (ToF-SIMS) and X-ray photoelectron spectroscopy (XPS). For this purpose, films consisting of BSA were prepared on cleaned titanium sheets in a phosphate buffered solution under different conditions and analysed by ToF-SIMS. The dependence of the surface coverage on the concentration of the protein solution could be determined from the secondary ion mass spectrometry signals. The results agree satisfactorily with the corresponding results obtained by XPS. The observed adsorption behaviour can be fitted by the well-known formula describing a Langmuir isotherm. The Langmuir constant for pH 7 was found to be K = 174±99lg - 1 K = {174}\pm {99}{\lg^{{ - 1}}} .  相似文献   

20.
The complexations of cadmium ion with guanine bases were detected by electrospray ionization mass spectrometry (ESI-MS). In order to explore the toxicity of cadmium, such as oxidative stress to DNA and carcinogenesis, it is very important to determine the interactions between the cadmium ion and nucleotide. The analysis of mixed cadmium ion-guanosine aqueous solution (molar ratio 1 : 9) using ESI-MS (cone voltage 20 V) showed the presence of various cadmium complex ions, such as [n (guanosine) + Cd](2+) (n = 3-8), [2guanine + Cd](2+), [guanosine + guanine + Cd](2+) and [guanosine + 2guanine + Cd](2+). The observed [2guanine + Cd](2+), [guanosine + guanine + Cd](2+) and [guanosine + guanine + Cd](2+) ions are formed through the dissociation of the N-glycoside bond at the interface of ESI-MS. For deoxyguanosine and ethylguanine, similar cadmium complexes were observed. However, the complexes between the cadmium ion and 8-hydroxydeoxyguanosine were not detected. Furthermore, when a higher molar ratio (Cd : guanosine) or cone voltage were used, more of the monovalent ion peaks, such as [Cd(guanine - H)(2) + H](+) and [Cd(guanosine - H)(2) + H](+), were observed and a decrease in the abundance of the divalent ions, such as [n(guanosine)+Cd](2+), occurred.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号