首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The zero bias tunneling conductance is investigated theoretically and shown to be a promising experimental tool for detecting first order phase transitions in high field superconductors. We calculate and evaluate numerically the zero bias tunneling conductance for arbitrary spin orbital mean free path. In doing the calculations we distinguish between thin films in a parallel field and high?-value materials in a perpendicular field. In the former case anomalous properties appear for sufficient long spin orbital mean free path. Finally we determine the minimum spin orbital mean free path which is compatible with a first order phase transition and show that it is much smaller than commonly believed.  相似文献   

2.
3.
Magnetic states and phase transitions of the layered triangular antiferromagnets in an applied field are studied. It is shown that in compounds like VBr2 and VCl2 quantum effects change the ground-state structure and cause successive phase transitions as the magnetic field increases. Coplanar structures of different spin configuration are realized far from the saturation field and a noncoplanar structure of umbrella-type configuration is realized near this field. The ground-state phase diagram is constructed, and a finite region of fields where the collinear phase is also possible is indicated.  相似文献   

4.
We have applied our two recent results [depending on its helicity photon carries a quantum flux of ± Φ 0 = ± hc/e and the quantized magnetic fluxes through the electronic orbits of the Dirac hydrogen atom are given by: Φ (n,l,mj) = (n‐l‐mj0) ] to the 1s‐2p and 2p‐3d excitonic transitions in nanostructures. It is shown that the flux changes for the non‐zero matrix elements in the 1s‐2p and 2p‐3d excitonic transitions is either ± Φ0 or zero. The present result supports the previous results stated above. It is also shown that spin flip is possible in the 1s‐2p and 2p‐3d excitonic transitions.  相似文献   

5.
It is found that the carriers of the high-Tc cuprates are polaron-like ‘stripons’ carrying charge and located in stripe-like inhomogeneities, ‘quasi-electrons’ carrying charge and spin, and ‘svivons’ carrying spin and lattice distortion. This is shown to result in the observed anomalous spectroscopic properties of the cuprates. The AF/stripe-like inhomogeneities result from the Bose condensation of the svivon field, and the speed of their dynamics is determined by the width of the double-svivon neutron-resonance peak. Pairing results from transitions between pair states of stripons and quasi-electrons through the exchange of svivons. The obtained pairing symmetry is of the dx2y2 type; however, sign reversal through the charged stripes results in features not characteristic of this symmetry. The phase diagram is determined by a pairing and a coherence line, associated with a Mott transition, and the pseudogap state corresponds to incoherent pairing.  相似文献   

6.
We present some results of a differential thermal analysis of the magnetic field induced phase transitions in the organic conductor (TMTSF)2ClO4 above 1.2 K. This study shows that transitions between different spin density wave states are first order and that the total entropy change involved in the two detected transitions (in the temperature range 1.2–2 K) is close to that of the quasi-one-dimensional electron gas. Above 2 and 4.2 K, only a single transition has been detected in our measurements. The entropy of that transition decreases and extrapolates to zero near 5 K. We present some arguments suggesting that if longitudinal nesting (2kF, 0, 0) is to take place in the semi-metallic SDW phase at high fields it exists only above 2 K or so.  相似文献   

7.
A mechanism of the formation of an exponentially large number of metastable states in magnetic phases of disordered Ising magnets as a result of condensation of fractal delocalized modes near the localization threshold is suggested. The thermodynamic properties of metastable states are studied in the effective-field approximation in the vicinity of transitions in magnets with zero uniform magnetization in the ground state such as dilute antiferromagnets, spin glasses, and dilute ferromagnets with dipole interaction. These properties are shown to determine the parameters of nonequilibrium processes in the glassy phase, namely, the shape of the hysteresis loop, the thermodynamic values in field-cooled and zero-field-cooled regimes, and the thermoremanent and isothermal remanent magnetization values.  相似文献   

8.
The presence of a Majorana bound state in condensed matter systems is often associated to a zero bias peak in conductance measurements. Here, we analyze a system were this paradigm is violated. A Majorana bound state is always present at the interface between a quantum spin Hall system that is magnetically gapped and a quantum spin Hall system gapped by proximity induced s-wave superconductivity. However, the linear conductance could be either zero or non-zero and quantized depending on the energy and length scales of the barriers. The transition between the two values is reminiscent of the topological phase transition in proximitized spin–orbit coupled quantum wires in the presence of an applied magnetic field. We interpret the behavior of the conductance in terms of scattering states at both zero and non-zero energy.  相似文献   

9.
Electronic transport through parallel coupled double quantum dots (DQD) with Rashba spin-orbit (RSO) interaction is investigated in Kondo regime by means of the slave-boson mean field approximation at zero temperature. By the co-action of the phase factor deduced by RSO interaction and the magnetic flux penetrating the parallel DQD, an interesting spin-dependent Kondo effect emerges. The molecular state representation theory is used to obtain a detailed understanding of the spin-dependent Kondo effect. It is shown that Quantum interference between the bonding Kondo state and antibonding state, which is modulated by the RSO interaction, plays a crucial role to the density of states and the linear conductance. The magnitude of each spin component conductance can be modulated by the RSO interaction strength. The conductance of each spin component exhibits 4π-periodic function with respect to φR. Moreover, the swap operation in the parallel DQD system can be implemented by tuning the RSO interaction.  相似文献   

10.
Nonequilibrium wetting transitions are observed in Monte Carlo simulations of a kinetic spin system in the absence of a detailed balance condition with respect to an energy functional. A nonthermal model is proposed starting from a two-dimensional Ising spin lattice at zero temperature with two boundaries subject to opposing surface fields. Local spin excitations are only allowed by absorbing an energy quantum (photon) below a cutoff energy E c . Local spin relaxation takes place by emitting a photon which leaves the lattice. Using Monte Carlo simulation nonequilibrium critical wetting transitions are observed as well as nonequilibrium first-order wetting phenomena, respectively in the absence or presence of absorbing states of the spin system. The transitions are identified from the behavior of the probability distribution of a suitably chosen order parameter that was proven useful for studying wetting in the (thermal) Ising model.  相似文献   

11.
The quantum anisotropic antiferromagnetic Heisenberg model with single ion anisotropy, spin S=1 and up to the next-next-nearest neighbor coupling (the J1J2J3 model) on a square lattice, is studied using the bond-operator formalism in a mean field approximation. The quantum phase transitions at zero temperature are obtained. The model features a complex T=0 phase diagram, whose ordering vector is subject to quantum corrections with respect to the classical limit. The phase diagram shows a quantum paramagnetic phase situated among Neél, spiral and collinear states.  相似文献   

12.
N. UryÛ 《Phase Transitions》2013,86(1-4):133-175
Abstract

Following the Bogoliubov variational principle, the equilibrium and stability equations of the free energy for the two sublattice antiferromagnetic system with inter- and intrasublattice exchange interactions and with an external magnetic field are investigated. For the Ising spin system with uniaxial anisotropy, the phase diagrams have been calculated for various values of anisotropy constant d and the ratio of intra- to intersublattice interaction constants γ. It is shown that first-order, as well as second-order transitions, occur for γ > 0, whereas only a second-order transition occurs for γ ≦ 0, irrespective of the sign of d. Furthermore, similar calculations are extended for the anisotropic Heisenberg spin system and quite interesting phase diagrams have been obtained. Next, the effects of the anisotropic exchange interactions on the magnetic ordered states and the magnetizations of the singlet ground state system of spin one and with a uniaxial anisotropy term are investigated in the vicinity of the level crossing field H ? D/gμ B . A field-induced ordered state without the transverse component of magnetization is shown to appear in a certain range of magnetic field as the spin dimensionality decreases. It has also turned out that the phase transition between this ordered state and the canted antiferromagnetic state ordinarily found for the isotropic singlet ground state system is of first order. Lastly, the stable spin configurations at a temperature of absolute zero for a two-sublattice uniaxial antiferromagnet under an external magnetic field of arbitrary direction are studied. In particular, the effects of a single ionic anisotropy D-term and anisotropy in the exchange interactions on the magnetic phases are investigated. The antiferromagnetic state has turned out to appear only for the external magnetic field along the easy axis of sublattice magnetization, and makes a first-order phase transition to the canted-spin state or the ferromagnetic state. For other field directions, no antiferromagnetic state appears and only a second-order phase transition between the canted-spin and the ferromagnetic states occurs. The critical field as a function of external field direction has been calculated for several D-values.  相似文献   

13.
ENDOR spectra of triplet state molecules have a chacteristic line from degenerate NMR transitions within the zero level (ZL) electron spin manifoldM S=0. The ZL line, observed at the free nuclear Larmor frequency, dominates spectra when the number of nuclei is large. This line was found to be substantially reduced in intensity at low temperature. The strong variation of the ZL line intensity is analyzed within the frame of an electric-circuit analogy modeling. The result is as follows: At low temperature the electron and nuclear spin-lattice relaxation rates become small, and the nuclear-nuclear spin flip-flop transitions between degenerate substates,M I=const within the ZL manifold, become relatively strong to compete for population redistribution. This reduces the population differences between nuclear sublevels. Additional NMR irradiation can thus do very little to reduce these differences even more, and the ENDOR effect becomes suppressed. A certain enhancement of the relaxationally suppressed ZL line occurring at increased EPR saturation is explained by the coherent action of the microwave field on the selected substate within the ZL manifold that shifts its energy out of the other degenerate states thereby closing the flip-flop relaxation channel.  相似文献   

14.
A group-theoretical analysis of the magnetic phase of BiMn2O5 oxide is performed using the space symmetry group of the compound. Using the projection operator method, we determine the basis functions of the irreducible representation of the space group, which are expressed in terms of the magnetic vector components. This representation can govern two phase transitions from the paramagnetic state to the antiferromagnetic phase with close temperatures and ordering of the spins of manganese ions in two crystallographic positions. It is found from renorm group analysis of these transitions that when these transitions occur as second- order transitions, the electric polarization does not appear in the system because spin fluctuations in this case elevate the symmetry of the system. Polarization appears when at least one of these transitions becomes a first-order transition as a result of spin fluctuations.  相似文献   

15.
The dynamics of multiphoton transitions in a two-level spin system excited by transverse microwave and longitudinal RF fields with the frequencies ωmw and ωrf, respectively, is analyzed. The effective time-independent Hamiltonian describing the “dressed” spin states of the “spin + bichromatic field” system is obtained by using the Krylov-Bogoliubov-Mitropolsky averaging method. The direct detection of the time behavior of the spin system by the method of nonstationary nutations makes it possible to identify the multiphoton transitions for resonances ω0 = ωmw + rωrf0 is the central frequency of the EPR line, r = 1, 2), to measure the amplitudes of the effective fields of these transitions, and to determine the features generated by the inhomogeneous broadening of the EPR line. It is shown that the Bloch-Siegert shifts for multiphoton resonances at the inhomogeneous broadening of spectral lines reduce only the nutation amplitude but do not change their frequencies.  相似文献   

16.
Spin-dependent transport of relativistic electrons through graphene based double barrier (well) structures with ferromagnetic electrodes have been theoretically investigated. Electron transmission with different spin states is strongly influenced by the incident wave vector, the height (depth) of the barrier and the separation between them. When the angle of the incident electrons is varied from zero to ±π/2, spin polarization varies from zero to 100% with characteristic oscillations that indicate spin anisotropy. Due to Klein tunnelling, spin-polarization is always zero for normal incident electrons; high spin-polarization only occurs at large incident angles. Because the resonance features in the spin-dependent transmission result from resonant electron states in wells or hole states in barriers, the conductance can reach e2/h in this resonant-tunnelling structure.  相似文献   

17.
Excitation of lowest electronic states of the thymine molecules in the gas phase is studied by elec- tron energy loss spectroscopy. In addition to dipole-allowed transitions to singlet states, transitions to the lowest triplet states were observed. The low-energy features of the spectrum at 3.66 and 4.61 eV are identified with the excitation of the first triplet states 13 A′ (π → π*) and 13 A″ (n → π*). The higher-lying features at 4.96, 5.75, 6.17, and 7.35 eV are assigned mainly to the excitation of the π → π* transitions to the singlet states of the molecule. The excitation dynamics of the lowest states is studied. It is found that the first triplet state 13 A′(π → π*) is most efficiently excited at a residual energy close to zero, while the singlet 21 A′(π → π*) state is excited with almost identical efficiency at different residual energies.  相似文献   

18.
An extensive numerical study is reported on the disorder effect in two-dimensional d-wave superconductors with random impurities in the unitary limit. It is found that a sharp resonant peak shows up in the density of states at zero energy and correspondingly the finite-size spin conductance is strongly enhanced which results in a nonuniversal feature in one-parameter scaling. However, all quasiparticle states remain localized, indicating that the resonant density peak alone is not sufficient to induce delocalization. In the weak disorder limit, the localization length is so long that the spin conductance at small sample size is close to the universal value predicted by Lee [Phys. Rev. Lett. 71, 1887 (1993)].  相似文献   

19.
Helical edge states exist in the mixed spin-singlet and spin-triplet phase of a noncentrosymmetric (NCS) superconductor [Y. Tanaka, T. Yokoyama, A.V. Balatsky, N. Nagaosa, Phys. Rev. B 79, 060505(R) (2009)]. In this article we have considered a planar ferromagnetic metal/NCS superconductor tunnel junction and have studied the effect of these helical edge states which manifests itself through the charge and spin tunneling conductance across the junction. We have shown the behavior of conductance for the entire range of variation of γ = Δ -/Δ + where Δ ± are the order parameters in the positive and negative helicity bands of the NCS superconductor. There exists a competition between the Rashba parameter α and the exchange energy E ex which is crucial for determining the variation of the conductance with the applied bias voltage across the junction. We have found a nonzero spin current across the junction which appears due to the exchange energy in the Ferromagnet and modulates with the bias voltage. It also changes its profile when the strength of the exchange energy is varied.  相似文献   

20.
The high-pressure induced phase transitions initiated by electronic transition in 3d ions from the high-spin (HS) to the low-spin (LS) state (HS-LS spin-crossover) are considered. Behavior of the system with d6 electronic configuration is investigated in the ground state of zero temperature and critical pressure Pc. Magnetic properties of the Mott–Hubbard insulator (Mg1−xFex)O are studied in the vicinity of the quantum critical point (T=0, Pc). At the critical pressure of spin crossover Pc, the spin gap energy εS between HS and LS states is zero. The quantum spins fluctuations HS⇔LS do not require any energy, and the antiferromagnetism is destroyed in the quantum critical point by the first order transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号