首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The kinetics of polymerization of acrylonitrile (AN) initiated by quinquevalent vanadium (V~(5+))-thiourea (TU) redox system has been investigated in aqueous nitric acid in the temperature range from 30 to 50℃. The polymerization rate (R_p) can be expressed as follows: In the copolymerization of acryionitrile with methyl acrylate (MA), the reactivity ratios were found to be 1.0 and 1.1, respectively. The experimental observations suggest that the initiating species is probably a complex consisting of a central ion of Lewis acid-VO_2~+ and the ligands of Lewis bases-acrylonitrile, thiourea, and nitrate anions, while the initiating system in lower concentration, the polymerization of acrylonitrile does not occur if the thiourea is acidified prior to its reaction with quinquevalent vanadium. This indicates that the primary radicals (or the monomeric radicals in the present article) are produced by associated thiourea rather than isothlourea.  相似文献   

2.
研究了亚硝酸钠引发硝酸溶液中丙烯腈的聚合反应。测得表现聚合速度 Rp=Ae~(-10,800/RT)[AN]~2.2[NaNO_2]~(0.17-1.0)[HNO_3]~(1.0-0.67 丙烯腈-丙烯酸甲酯共聚合反应中竞聚率分别是γ_An=0.96,γ_MA=1.17,表明聚合反应是按自由基机理进行。 根据聚合动力学和红外光谱分析,认为以亚硝酸钠引发硝酸溶液中丙烯腈的聚合反应与电解或金属溶蚀过程中的次级引发相同。  相似文献   

3.
The present paper deals with the kinetics of polymerization of acrylonitrile (AN) initialed by the redox system of polypropylene-based vanadyi polyimidodiacetate (PV)-thiourea (TU)in aqueous sulfuric acid in the temperature range from 25 to 40℃. The polymerization rate was measured by varying the concentrations of monomer, vanadyl polyimidodiacetate, thiourea and sulfuric acid. The overall rate of polymerization was summarized asRp=2.2×10~5e~(-6.560/RT) [AN]~(1.0)[PV]~(0.50)[TU]~(1.5)[H_2SO_4]~(2.0)The molecular weight of polyacrylonitrile based on the experimental data was:(?)=k 1/T [pv]~(0.50)[TU]~(1.5)[H_2SO_4]~(2.0)These results indicated that the chain radicals are terminated by combination and/or disproportionation rather than chain transfer. The cooperation effect of carboxylic groups and the macromolecular field effect of polymer supporter are the characters of vanadyl polyimidodiacetate such as the case reported in early paper.  相似文献   

4.
The polymerization of acrylonitrile (AN) in aqueous nitric acid initiated by " cage " vanadyl polycarboxylate (P=VO)-thiourea (TU) complex was investigated. The overall rate ofpolymerization isThe relationship between the induction period (τ) and the temperature of polymerization as well as the concentrations of reactants can be expressed as follows :The molecular weight of polyacrylonitrile increases with increasing monomer concentration and decreases with increasing temperature of polymerization and concentrations of vanadyl polycarboxylate and thioureaThe polymerization mechanism was proposed and discussed.  相似文献   

5.
The polymerization of acrylonitrile (AN) in aqueous nitric acid initiated by metavanadate-containing anion exchange resin (PV)-thiourea (TU) redox system at 20—40℃. has been investigated. The overall rate of polymerization (R_p) is given byR_p=1.92×10~4e~(-6.860/RT) [AN]~(1.2) [PV]~(0.44) [TU]~(1.0)[HNO_3]~(1.0)The kinetic parameters differed from those of V~(5+)-TU system indicated that the generation of the primary radicals is mainly a difffusion-controlled reaction. The effect of macromolecular field arisen from the polymer matrix exerts a great influence on the polymerization process.  相似文献   

6.
The electro-initiated polymerization of acrylonitrile initiated by the anodic oxidation of an aqueous acid solution (80% HOAc + 20% H2O) containing Mn(OAc)2 · 4H2O/CNCH2COOH has been investigated in the 30–40°C temperature range. The kinetics and mechanism of the process has been investigated as a function of variables and a suitable mechanism proposed. From the experimental observations the rate of polymerization is seen to be proportional to [An]1.5I0.5[Mn+2]0.5 and [CAA]0.5. The rate of polymerization gradually decreases at a higher applied current. The rate was independent of [CAA]0.5. The rate of polymerization gradually decreases at a higher applied current. The rate was independent of CAA at high concentration. The average degrees of polymerization (P n) increases with increasing AN and decreasing [CAA], [Mn+2] and applied current, I. The initiation is due to the anodic oxidation of Mn+2–CNCH2COOH complex. Both the initiation of polymerization by the primary radical, viz., CN? C?? COOH as well as the oxidation of the primary radical at the electrode are equally significant reactions and neither can be neglected in comparison with the other. Predominant mutual termination accounts for all the observed data.  相似文献   

7.
A comparative study on photoinitiated solution copolymerization of Styrene (Sty), with acrylonitrile (AN) using pyrene, 1-acetylpyrene, and 1-(bromoacetyl)pyrene (BrPy) as initiators, showed that the introduction of a chromophoric moiety, bromoacetyl (–COCH2Br), significantly increased the photoinitiating ability of pyrene. The kinetics and mechanism of copolymerization of Sty with AN (Sty–co–AN) using BrPy as photoinitiator has been studied in detail. The kinetic data, inhibiting effect of benzoquinone, and electron spin resonance (ESR) studies suggest that the polymerization proceeds via a free radical mechanism. The system followed non-ideal kinetics (R p α[BrPy]0.7[Sty]1.09[AN]1.01) and degradative solvent transfer reasonably explained these kinetic non-idealities. The co-monomer reactivity ratios calculated by using the Finemann–Ross and Kelen–Tudos models were r 1 (Sty) = 0.39 and r 2 (AN) = 0.05. The reactivity ratios strongly indicate that the two monomers enter in almost alternating arrangement along the copolymer chain.  相似文献   

8.
The aqueous polymerization of methacrylamide (I) initiated by KBrO3–thioglycolic acid (TGA) has been studied at 30 ± 0.2°C in nitrogen. The rate is given by K[M]1.19 [thioglycolic acid]1 [KBrO3]0.53 for 10–15% conversion. Activation energy was found to be 53.96 kJ/mole (12.92 kcal/mole) in the investigated range of temperature 30–45°C. The role of addition of a series of aliphatic alcohols and some salts was also determined. The kinetics of polymerization was followed iodometrically.  相似文献   

9.
Radical polymerization of methacrylic acid (MAA) and acrylic acid (AA) in the presence of a positively charged macromolecular matrix was studied. In the presence of a matrix, the rates of polymerization were remarkably increased, especially in high pH region. This suggests that electrostatic interaction between the macromolecular matrix and the growing chains and/or the monomer molecules plays an important role in the process of polymerization reaction. The kinetic orders were greatly influenced by the relative matrix concentration (PC) as follows: for (PC)0 > [M]0, Rp = k[M]0.9 [PC]0.3 [I]0.8≤ [M]0 Rp = k[M]0.3[PC]0[I]0,8 where [M] and [I] are monomer and initiator concentration, respectively, and k is a constant. The mechanism of the interaction of matrix with monomer and/or growing chains in the process of the propagation is discussed. The complex formed in the matrix polymerization could be easily made into fiber by spinning.  相似文献   

10.
The kinetics of the K2S2O8-initiated inverse emulsion polymerization of aqueous sodium acrylate solutions in kerosene with Span 80 as the emulsifier has been studied. The conversion-time curves are S-shaped. The following expressions have been obtained for the maximum rate of polymerization and the molecular weight of the polymers under the experimental conditions investigated: Rmax ∞ [K2S2O8]0.78[sodium acrylate]1.5[Span 80]0.1, (OVERLINE)M(/OVERLINE)u ∞ [K2S2O8]−0.37[sodium acrylate]2.9[Span 80]−0.2. The activation energy for the maximum rate of polymerization is 94.8 kJ mol−1. The results suggest a monomer–droplet–nucleation mechanism for the system studied. © 1996 John Wiley & Sons, Inc.  相似文献   

11.
The aqueous polymerization of acrylamide initiated by the potassium persulfate/lactic acid system catalyzed by Ag+ ions has been studied iodometrically over the temperature range from 35 to 50 ± 0.2°C. The rate of polymerization is governed by the expression Rp ∞ [M]0.8[K2S2O8]1.0[Ag]1.0 The deviation from normal kinetics has been studied. A tentative mechanism of initiation is suggested. The overall energy of activation is 5.52 kcal/mol.  相似文献   

12.
The polymerization of acrylonitrile (AN) initiated by the system of tetramethyl tetrazene (TMT) and bromoacetic acid (BA) in dimethylformamide (DMF) was studied. The TMT–BA system could initiate the polymerization of AN more easily than TMT alone. The polymerization was confirmed to proceed through a radical mechanism. The initial rate of polymerization Rp was expressed by the equation: Rp = [TMT]0.62-[BA]0.5[AN]1.5. The overall activation energy for the polymerization was estimated as 9.4 kcal/mole. In the absence of monomer, the reaction of TMT with BA in DMF was also studied kinetically by measuring the evolution of nitrogen gas. The reaction was first-order in TMT and first-order in BA; the rate data at 49°C were k2 = 9.1 × 10?2l./mole-sec., ΔH? = 17.0 kcal/mole, and ΔS? = ? 6.6 eu. In addition, the treatment of TMT with BA in benzene led to the formation of tetramethylhydrazine radical cation, which was identified by its ESR spectrum. On the other hand, the relatively strong interaction between TMT and DMF was observed by absorption spectrophotometry.  相似文献   

13.
A novel polyurethane iniferter, synthesized from equal moles of toluene diisocyanate and 1,1,2,2-tetraphenyl-1,2-ethanediol, was used to polymerize acrylonitrile to assess whether it proceeded via a “living” radical polymerization mechanism. From the kinetic results, the rate of polymerization could be expressed as Rpα[BPT]0.96[AN]1.64. The increase of number-average molecular weight with increase of both conversion and polymerization time, the bimodal molecular weight distribution in gel permeation chromatography and the increase of molecular weight in the post-polymerization of polyacrylonitrile confirm that the present tetraphenylethane-based polyurethane iniferter follows a “living” radical polymerization mechanism. © 1996 John Wiley & Sons, Inc.  相似文献   

14.
Radical polymerization of butadiene 1-carboxylic acid (Bu-1-Acid) was carried out in aqueous solutions at 50°C with ammonium persulfate (APS) as an initiator. Kinetic studies led to the rate equation, Rp = k[APS]1/2 [Bu-1-Acid]1 at pH 6.8. The overall activation energy for the polymerization was 16.0 kcal/mole. The polymerization rate Rp of Bu-1-Acid decreased with an increase of pH in the range 2.4–6.8 and increased with an increase of pH in the range 6.8–8.4. Moreover, in the pH range 8.4–13, the rate of polymerization was not affected by the pH of the system. In copolymerization with acrylonitrile, the trends of changes in the monomer reactivity ratios r1, r2 and Q-e values caused by changes in pH were similar to trends found in homopolymerization described above. In addition, it was observed that the resultant polymer was extended in alkaline solution and contracted in acidic solution.  相似文献   

15.
The kinetics of polymerization of acrylonitrile initiated by potassium peroxodisulfate in neutral and acid conditions was studied. Rp depended upon [S2O8 2-]1/2 and [monomer]3/2 both in neutral and acid solutions. The influence of ionic strength and the cata-lytic effect of Ag+ on the System are discussed. Suitable mech-anisms are proposed.  相似文献   

16.
 The kinetics of suspended emulsion polymerization of methyl methacrylate (MMA), in which water acted as the dispersed phase and the mixture of MMA and cyclohexane as the continuous phase, was investigated. It showed that the initial polymerization rate (Rp0) and steady-state polymerization rate (Rp) were proportional to the mass ratio between water and oil phase, and increased as the polymerization temperature, the potassium persulphate concentration ([I]) and the Tween20 emulsifier concentration ([S]) increased. The relationships between the polymerization rate and [I] and [S] were obtained as follows: Rp0∝[I]0.71[S]0.23.The above exponents were close to those obtained from normal MMA emulsion polymerization. It also showed that the average molecular weight of the resulting poly(methylmethacrylate) decreased as the polymerization temperature,[I]and [S] increased. Thus, MMA suspended emulsion polymerization could be considered as a combination of many miniature emulsion polymerizations proceeding in water drops and obeyed the classical kinetics of MMA emulsion polymerization.  相似文献   

17.
Summary Methacrylamide was polymerized in aqueous medium at 35 ± 0.2 °C with the redox pair K2S2O8/ thiomalic acid (mercaptosuccinic acid) in dark under nitrogen atmosphere. The effect of monomer, K2S2O8 and thiomalic acid concentrations and temperature on the rate of polymerization was studied. The kinetics of polymerization was followed iodometrically.The role of the addition of complexing metal ions and a series of aliphatic alcohols was also investigated. The initial rate of polymerization was found to be independent of the concentration of thiomalic acid. Rate may be expressed by the following equation:R p [M]1.5[K2S2O8]0.76. The energy of activation was found to be 9.0 Kcal/deg/mole.With 4 figures  相似文献   

18.
The bulk polymerization of acrylonitrile (AN) initiated by copper (II) nitrate, Cu(II), in the absence of light has been studied. The rate of the AN polymerization may be expressed in the Cu(II) concentration range from 5 × 10?4 to 1 × 10?1 mole 1.?1 by the equation, Rp = k5[Cu(II)]0.68, where k5 = KAN[AN]/(1 + KAN[AN]). From the spectrophotometric measurements the values of 0.70 l./mole and 0.08 l, mole were obtained for the equilibrium constant at 20 and 60°C, respectively, KAN = [C]/[AN]-[Cu(II)], corresponding to the formation of the complex C from acrylonitrile and copper (II) nitrate. An addition of triphenylphosphine (C6H5)3P into the polymerization system reduces Rp, and no polymerization takes place at all provided [(C6H5)3P]/[Cu-(II)] ≧ 5. The retardation effect of (C6H5)3P on the polymerization of AN initiated by Cu(II) is attributed to a competitive reaction of Cu(II) with (C6H5)3P in which Cu(II) is reduced and the product of this reduction CuNO3·2(C6H5)3P is inactive with respect to the polymerization of AN.  相似文献   

19.
Polymerization of acrylonitrile photoinitiated by naphthalene, anthracene, phenanthrene, and pyrene is accelerated by an admixture of zinc (II) chloride, acetate, or nitrate. The effect of zinc (II) salts on the rate of pyrene-photoinitiated polymerization of acrylonitrile leads to an increase in this rate in the order Zn/OCOCH3/2 < ZnCl2 < Zn/NO3/2. The maximum polymerization rate is achieved at the molar ratio [ZnCl2]/([ZnCl2] + [pyrene]) approximately 0.7. In contrast to the photoinitiated polymerization of acrylonitrile, the methyl methacrylate admixture of zinc (II) chloride exerts a smaller effect on the polymerization rate. In the pyrene-photoinitiated polymerization of styrene an admixture of zinc (II) chloride retards the polymerization rate. Fluorescence of aromatic hydrocarbon in the system acrylonitrile–aromatic hydrocarbon is efficiently quenched by zinc (II) chloride. Stern–Volmer constants determined for pyrene (80 dm3 mole?1), phenanthrene (66 dm3 mole?1), and naphthalene (49 dm3 mole?1) are higher by about 2–3 orders of the Stern–Volmer constants for fluorescence quenching of aromatic hydrocarbons by acrylonitrile in the absence of ZnCl2. The fluorescence of anthracene in acrylonitrile is not quenched by ZnCl2. The acceleration effect of Zn (II) salts on the polymerization of acrylonitrile photoinitiated by aromatic hydrocarbons depends on two factors: an increase in the ratio of the rate constant of the growth and termination reactions, kp/kt, and an increase in the quenching constant of fluorescence of aromatic hydrocarbon, kq, by the complex {acrylonitrile…ZnCl2}. ZnCl2 thus influences both the growth and initiation reactions of the polymerization process.  相似文献   

20.
The anodic oxidation of 1,3-dimethoxybenzene (MDMB) on a platinum electrode in non-aqueous tetrabutylammonium perchlorate (TBAP) + acetonitrile solutions begins at 1100 mV. Under polarization at constant potential a polymer film is formed at potentials above than 1700 mV. The empirical kinetics of the formation and growth of this film were investigated using microgravimetry and coulometry. Under all experimental conditions the polymerization rate Rp changes after 10 s of polarization, and this behavior can be described by the empirical equationsRp = k[MDMB]0.3[TBAP]0.4tpol <10sR′p = k′[MDMB]0.9[TBAP]0.5tpol 10 s The apparent activation energy is 25 ± 1 kJ mol−1 in both cases. The electrogenerated polymer film has a bilayer structure: a inner compact adherent golden layer, and an outer powdery brown layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号