首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The absorption spectra of Y3Ga5O12:(Fe3+), Y3Ga5O12:(Bi3+) and Y3Ga5O12:(Bi3+, Fe3+) are presented to 40,000 cm-1. Assignments are discussed and the transitions analysed in terms of their involvement in the large Faraday rotation observed in bismuth substituted iron garnets.  相似文献   

2.
The method of X-ray absorption spectroscopy has been used for the investigation of charge states of iron ions in iron borate nanoceramics prepared by shear deformation under pressure. The experimental Fe 2p X-ray absorption spectra have been presented in comparison with the calculation of atomic multiplets of iron ions taking into account the charge transfer from the 2p orbitals of oxygen to the 3d orbitals of iron and the crystal-field splitting of the 3d orbitals of iron. Our results indicate that, in addition to iron ions in the ground charge state Fe3+, nanostructured FeBO3 contains a few percent of Fe2+ ions. It has been found that an increase in the degree of plastic deformation (the rotation angle of the anvils) leads to a decrease in the size of crystallites and to an increase in the concentration of Fe2+ ions without the formation of new phases. The results of this work agree with the magnetic and optical measurements and confirm high defectness of FeBO3 nanoceramics.  相似文献   

3.
Room temperature electron paramagnetic resonance (EPR) spectra and temperature dependent magnetic susceptibility data have been obtained on bulk x(ZnO,Fe2O3)(65−x)SiO220(CaO, P2O5)15Na2O (6≤x≤21 mole%) glasses prepared by melt quenching method. EPR spectra of the glasses revealed absorptions centered at g≈2.1 and 4.3. The variations of the intensity and line width of these absorption lines with composition have been interpreted in terms of the variation in the concentration of the Fe2+ and Fe3+ ions in the glass and the interaction between the iron ions. EPR and magnetic susceptibility data of the glasses reveal that both Fe2+ and Fe3+ ions are present in the glasses, with their relative concentration being dependent on the glass composition. The studies reveal superexchange type interactions in these glasses, which are strongly dependent on their iron content.  相似文献   

4.
New germanosilicate glasses giving the crystallization of yttrium iron garnet Y3Fe5O12 (YIG) and Bi-doped YIG, 23Na2O-xBi2O3-(12−x)Y2O3-25Fe2O3-20SiO2-20GeO2 (mol%), are developed, and the laser-induced crystallization technique is applied to the glasses to pattern YIG and Bi-doped YIG crystals on the glass surface. It is clarified from the Mössbauer effect measurements that iron ions in the glasses are present mainly as Fe3+. It is suggested from the X-ray diffraction analyses and magnetization measurements that Si4+ ions are incorporated into YIG crystals formed in the crystallization of glasses. The irradiations (laser power: 32-60 mW and laser scanning speed: 7 μm/s) of continuous wave Yb:YVO4 fiber laser (wavelength: 1080 nm) are found to induce YIG and Bi-doped YIG crystals, indicating that Fe3+ ions in the glasses act as suitable transition metal ions for the laser-induced crystallization. It is suggested that YIG and Bi-doped YIG crystals in the laser irradiated part might orient. The present study will be a first step for the patterning of magnetic crystals containing iron ions in glasses.  相似文献   

5.
Mössbauer spectra of 57Fe in LaFe12O19 show that the substitution of La3+ for Ba2+ or Sr2+ in XFe12O19 is associated with a valency change of Fe3+ to Fe2+ at the 2a or 4f2 site. Temperature dependences of the hyperfine fields at the various sublattices are given.  相似文献   

6.
A Fe doped rutile TiO 2 single crystal is grown in an O 2 atmosphere by the floating zone technique.Electron spin resonance (ESR) spectra clearly demonstrate that Fe 3+ ions are substituted for the Ti 4+ ions in the rutile TiO 2 matrix.Magnetization measurements reveal that the Fe:TiO 2 crystal shows paramagnetic behaviour in a temperature range from 5 K to 350 K.The Fe 3+ ions possess weak magnetic anisotropy with an easy axis along the c axis.The annealed Fe:TiO 2 crystal shows spin-glass-like behaviours due to the aggregation of the ferromagnetic clusters.  相似文献   

7.
A single-crystal TlGaSe2 doped by paramagnetic Fe ions has been studied at room temperature by electron paramagnetic resonance (EPR) technique. The fine structure of EPR spectra of paramagnetic Fe3+ ions was observed. The spectra were interpreted to correspond to the transitions among spin multiplet (S=5/2, L=0) of Fe3+ ion, which are splitted by the local ligand crystal field (CF) of orthorhombic symmetry. Four equivalent Fe3+ centers have been observed in the EPR spectra and the local symmetry of crystal field at the Fe3+ site and CF parameters were determined. Experimental results indicate that the Fe ions substitute Ga at the center of GaSe4 tetrahedrons, and the rhombic distortion of the CF is caused by the Tl ions located in the trigonal cavities between the tetrahedral complexes.  相似文献   

8.
This study aims to investigate the effect Fe ions doped into Ca12Al14O33 (C12A7, 12CaO-7Al2O3) cement compound on its thermal and optical properties. Polycrystalline samples of Ca12Al14?xFexO33 (where x?=?0.0, 0.5, and 1.0) were prepared via a solid state reaction in an oxygen atmosphere. The lattice constant of Ca12Al14O33 determined using an XRD technique was in excellent agreement with first-principles calculations. With increasing Fe concentrations, the lattice constants were found to have increased. Additionally, the optical gaps of Ca12Al14?xFexO33, (x?=?0, 0.25, 0.5, and 1.0) were 3.9?eV, 3.77?eV, 3.75?eV and 3.63?eV, respectively. It was clearly seen that the optical gap decreased with increasing Fe concentrations. As revealing by first-principles calculations, the optical gap was directly related to the electronic transition from the occupied electronic state of extra-framework O2? ions (as free O2? ions inside nano-cage) to the conduction band. Moreover, we also found that the thermal conductivity Ca12Al14?xFexO33 was reduced when the larger atomic mass and atomic radii Fe was substituted into Al sites. Hence, this indicated that Fe3+-substitution into Al3+ sites of Ca12Al14O33 cement directly affected both its optical gap and thermal conductivity.  相似文献   

9.
Single-phased polycrystalline Y3Fe5−2xAlxCrxO12 garnet samples (x=0, 0.2, 0.4 and 0.6) have been prepared by the conventional ceramic technique. Rietveld refinement of X-ray diffraction patterns of the samples shows them to crystallize in the Ia3d space group and the corresponding lattice constant to decrease with increasing Al3+ and Cr3+ contents (x). Mössbauer results indicate that Cr3+ substitutes for Fe3+ at the octahedral sites whilst Al3+ essentially replaces Fe3+ at the tetrahedral sites. This result indicates that co-doping of Y3Fe5O12 does not affect the preferential site occupancy for separate individual substitution of either Cr3+ or Al3+. The magnetization measurements reveal that the Curie temperature (Tc) monotonically decreases with increasing x while the magnetic moment per unit formula decreases up to x=0.4 and then slightly increases for x=0.6. This reflects a progressive weakening of the ferrimagnetic exchange interaction between the Fe3+ ions at octahedral and tetrahedral sites due to co-substitution. The magnetic moment was calculated using the cations distribution inferred from the Mössbauer data and the collinear ferrimagnetic model, and was found to agree reasonably with the experimentally measured value. The phenomenological amplitude crossover, characterized by the temperature T*, has also been observed in the doped YIG and briefly discussed.  相似文献   

10.
57Fe Mössbauer spectra at room temperature, both with and without external magnetic field, indicate that Co2+ ions in CoxFe3?xO4spinels (x?0.04) are situated on the octahedral B sites. The Mössbauer parameters are listed and the existence of unpaired Fe3+ ions is evidenced.  相似文献   

11.
The affect of sulphur on the structural properties of iron sodium diborate glasses having the composition {(100−x)Na2B4O7+xFe2O3}+yS, where x=0.05, 0.15 and 0.25 mol% and Y=0, 2.5 and 5 wt% was studied by infrared, Mossbauer spectroscopy and magnetic susceptibility measurements. It was found that, for samples having 5 mol% Fe2O3 and free from sulphur, the iron ions are present in both Fe2+ and Fe3+ states and also 92% of the total iron enters the glass network as a glass former. The ratio of Fe3+/Fe2+ increases with increasing the iron content for sulphur-free samples and others containing sulphur. This ratio also decreases with increasing the sulphur content. The magnetic susceptibility was found to decrease with increasing the sulphur content. Also, the increase of Fe2O3 content led to a less symmetrical environment of Fe3+ ions and vice versa for the Fe2+ environment.  相似文献   

12.
The hexagonal ferrite Fe2W = BaFe22+Fe3+16O27 exhibits a sharp 57Fe Mössbauer spectrum at 300 and 78 K. All seven sublattices in this complicated crystal structure are detected. Fast electron exchange between Fe2+ and Fe3+ ions gives rise to sharp lines and makes them indistinguishable. At 5 K the exchange is slow and the Fe2+ ions are detected from the presence of a weak subspectrum with broadened lines separated from the main spectrum of the Fe3+ ions. Analysis shows that the Fe2+ ions reside exclusively on one of the seven sublattices, which is occupied statistically by Fe2+ and Fe3+ ions in the ratio of 2 : 1. For SrFe2+2Fe3+16O27 the situation is the same.  相似文献   

13.
(In1−xFex)2O3 (x = 0.02, 0.05, 0.2) powders were prepared by a solid state reaction method and a vacuum annealing process. A systematic study was done on the structural and magnetic properties of (In1−xFex)2O3 powders as a function of Fe concentration and annealing temperature. The X-ray diffraction and high-resolution transmission electron microscopy results confirmed that there were not any Fe or Fe oxide secondary phases in vacuum-annealed (In1−xFex)2O3 samples and the Fe element was incorporated into the indium oxide lattice by substituting the position of indium atoms. The X-ray photoelectron spectroscopy revealed that both Fe2+ and Fe3+ ions existed in the samples. Magnetic measurements indicated that all samples were ferromagnetic with the magnetic moment of 0.49-1.73 μB/Fe and the Curie temperature around 783 K. The appearance of ferromagnetism was attributed to the ferromagnetic coupling of Fe2+ and Fe3+ ions via an electron trapped in a bridging oxygen vacancy.  相似文献   

14.
YAG and YIG crystals implanted respectively with 100 keV57Fe2+ ions (1 × 1017 ions.cm?2) and 50 keV27Al ions (1.1 × 1017 ions.cm?2) have been studied by conversion electron Mössbauer spectroscopy (CEMS) directly after implantation and after annealings in air at temperatures up to 1100°C. In both as-implanted samples iron is found mainly in three states: Fe2+, Fe3+ and small metallic precipitates. Annealing behaviour is divided into two stages: (i) up to 400°C the iron has become completely oxidized and (ii) between 400 and 850°C the epitaxial regrowth of the implanted layer takes place. During this process a part of iron ions are incorporated into octahedral and tetrahedral sites, thus making a Y3 (Al Fe)5 O12 compound. The remaining iron part precipitates in the form of Fe2O3 particles.  相似文献   

15.
In this paper, we give an alternative suggestion that both the observed optical and electron paramagnetic resonance (EPR) spectra of Yttrium oxide (Y2O3):V3+ are attributed to V3+ ions at the S6 site of Y2O3. This suggestion is different from the opinion in the previous paper that the optical and EPR spectra are attributed to V3+ ions at the C2 and S6 sites, respectively. From the suggestion, the optical band positions and spin-Hamiltonian parameters are calculated by diagonalizing the complete energy matrix for 3d2 ions in trigonal symmetry. The results are in good agreement with the experimental values, suggesting that both the observed optical and EPR spectra in Y2O3:V3+ may be due to V3+ at S6 site of Y2O3 crystal.  相似文献   

16.
Measurements of the Faraday rotation of ErIG, Er3Fe5O12, have been performed in the 4.2–300 K temperature range in magnetic field up to 20 kOe applied along the [111] direction and at 1.15 μm wavelength. The results are analysed under the assumption that the contribution of the Fe3+ ions to the total Faraday rotation is the same as that of YIG, Y3Fe5O12. The temperature and field dependences of the contribution of the Er3+ ions are deduced. Both magnetic and electric dipole contributions of the Er3+ ions are calculated; the electric dipole coefficient Ce is found to present a linear temperature dependence between 30–300 K. The temperature dependence of the Faraday rotation susceptibility differs strongly from that of the magnetic susceptibility.  相似文献   

17.
The electronic structure of Mg0.95Mn0.05Fe2−2xTi2xO4 (0x0.8) compound is investigated using near edge X-ray absorption fine structure, (NEXAFS) spectroscopy measurements, carried out at O K, Fe and Ti L3,2-edges at room temperature. The O K-edge spectra indicate that the Fe 3d orbitals have been considerably modified and a new spectral feature start dominating in the pre-edge region at higher Ti doping. The Fe 2p NEXAFS spectra exhibit a mixed valent Fe2+/Fe3+ states apart from the conversion of Fe3+ to Fe2+ with the substitution of Ti ions. The Ti L3,2-edge spectra indicate that Ti ions remain unchanged at 4+ state. These variations in the host electronic structure due to Ti substitution are consistent with the dielectric and transport properties of the material.  相似文献   

18.
As in magnetite Fe3O4, calcium ferrite CaFe3O5 is an oxide in which electron transfer occurs between the iron ions (Fe3+Fe2+ = 2). This intervalence exchange process has been studied by 57Fe Mössbauer spectroscopy and by electrical conductivity measurements. In CaFe3O5, the Fe3+ and Fe2+ ions occupy different crystallographic sites and have a deformed octahedral coordination. Each Fe2+O6 octahedron shares an edge with two Fe3+O6 octahedra. In the antiferromagnetic region (TN = 282 ± 2 K), the Fe3+ and Fe2+ ions are well differentiated. Thermally-activated electron transfer is observed above tn, in the paramagnetic region and is well characterized by the Mössbauer spectra. These are analyzed using the hypothesis of an electron jump limited to a trimer Fe3+Fe2+Fe3+ which leads to a relaxation time of 180 ns at 298 K and 80 ns at 400 K. Within this temperature interval, the process follows the Arrhenius law with an activation energy of 0.10 eV. Electrical conductivity measurements lead to similar results with an activation energy of 0.09 ± 0.02 eV.  相似文献   

19.
The ferrimagnetic saturation moment and hexagonal anisotropy constant K1 have been measured at 4K on a Zn2Y single crystal and on polycrystalline BaFe2+2W and SrFe2+2W samples. The moment of Fe2W is in agreement with a collinear spin coupling and with the known site occupation for the Fe2+ ions. The moment of Zn2Y is 9% lower than the value for a collinear configuration.The uniaxial anisotropy of Fe2+ in hexagonal ferrites is discussed and compared with that of Co2+. No noticeable Fe2+ anisotropy is found in Fe2W in contrast to LaM = LaFe2+Fe3+11O19, in which the Fe2+ anisotropy is strong. The difference is attributed to the symmetry difference of the sites occupied by the Fe2+ ions in both compounds. The current theory does not satisfactorily explain the anisotropy and quadrupole splitting of Fe2+ in LaM. From this it is concluded that admixing of 5E states and (or) the influence of a dynamical Jahn-Teller effect cannot be neglected.The dipole-dipole anisotropy is computed for the M, W and Y structure and some deviation from the literature data is found. Using these results, a mean anisotropy of 1.3 to 2.3 cm?1 per Fe3+ ion is found for the three structures.  相似文献   

20.
Upconversion (UC) spectra of Ho3+/Yb3+ codoped Y2O3, Gd2O3 bulk ceramics were obtained under the excitation of a 976 nm diode laser. Systematic experimental studies, including power dependence, luminescence lifetime, and the intensity ratio σ for the green to NIR emissions, were carried out in order to confirm the UC mechanism of Ho3+ ions. Our results demonstrated that the NIR emission was associated with the 5F4/5S25I7 transition of Ho3+ ions without the contribution of the 5I45I8 transition for Ho3+/Yb3+ codoped Y2O3 and Gd2O3 bulk ceramics. Additionally, population saturation in the 5I7 energy level had been observed in Ho3+/Yb3+ codoped Y2O3, Gd2O3 bulk ceramics. All experimental observations can be well explained by the steady-state rate equations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号