首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Using Banach contraction principle and Leray-Schauder nonlinear alternative we establish sufficient conditions for the existence and uniqueness of solutions for boundary value problems for fractional differential equations with fractional integral condition, involving the Caputo fractional derivative. Some examples are given to illustrate our results.  相似文献   

2.
By employing majorant functions, the existence and uniqueness of holomorphic solutions to nonlinear fractional partial differential equations (the Cauchy problems) are introduced. Furthermore, the analytic continuation of solutions is studied.  相似文献   

3.
We prove the existence and uniqueness theorem of solutions to the Cauchy problem for the equations with the right-hand side and the initial condition possessing the fractional time derivative and generalized functions.  相似文献   

4.
In this paper, the approximate analytical solutions of Lotka–Volterra model with fractional derivative have been obtained by using hybrid analytic approach. This approach is amalgamation of homotopy analysis method, Laplace transform, and homotopy polynomials. First, we present an alternative framework of the method that can be used simply and effectively to handle nonlinear problems arising in several physical phenomena. Then, existence and uniqueness of solutions for the fractional Lotka–Volterra equations are discussed. We also carry out a detailed analysis on the stability of equilibrium. Further, we have derived the approximate solutions of predator and prey populations for different particular cases by using initial values. The numerical simulations of the result are depicted through different graphical representations showing that this hybrid analytic method is reliable and powerful method to solve linear and nonlinear fractional models arising in science and engineering. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, the existence and uniqueness results of variable-order fractional differential equations (VOFDEs) are studied. The variable-order fractional derivative is defined in the Caputo sense, and the fractional order is a bounded function. The existence result of Cauchy problem of VOFDEs is obtained by constructing an iteration series which converges to the analytical solution. The uniqueness result is obtained by employing the contraction mapping principle. Since the variable-order fractional derivatives contain classical and fractional derivatives as special cases, many existence and uniqueness results of references are significantly generalized. Finally, we draw some conclusions of variable-order fractional calculus, and two examples are given for demonstrating the theoretical analysis.  相似文献   

6.
In this paper, a class of nonlinear fractional order differential impulsive systems with Hadamard derivative is discussed. First, a reasonable concept on the solutions of fractional impulsive Cauchy problems with Hadamard derivative and the corresponding fractional integral equations are established. Second, two fundamental existence results are presented by using standard fixed point methods. Finally, two examples are given to illustrate our theoretical results.  相似文献   

7.
In this paper, we deal with a class of nonlinear Sobolev type fractional integro-differential equations with delay using Hilfer fractional derivative, which generalized the famous Riemann–Liouville fractional derivative. The definition of mild solutions for studied problem was given based on an operator family generated by the operator pair (AB) and probability density function. Combining with the techniques of fractional calculus, measure of noncompactness and fixed point theorem, we obtain new existence result of mild solutions with two new characteristic solution operators and the assumptions that the nonlinear term satisfies some growth condition and noncompactness measure condition. The results obtained improve and extend some related conclusions on this topic. At last, an example is given to illustrate our main results.  相似文献   

8.
This paper studies a class of nonlinear fractional $q$-difference equations with integral boundary conditions. By exploiting the properties of Green"s function and two fixed point theorems for a sum operator, the existence and uniqueness of positive solutions for the boundary value problem are established. Iterative schemes for approximating the solutions are also obtained. Explicit examples are given to illustrate main results.  相似文献   

9.
We study the boundary value problem of a coupled differential system of fractional order, and prove the existence and uniqueness of solutions to the considered problem. The underlying differential system is featured by a fractional differential operator, which is defined in the Riemann-Liouville sense, and a nonlinear term in which different solution components are coupled. The analysis is based on the reduction of the given system to an equivalent system of integral equations. By means of the nonlinear alternative of Leray-Schauder, the existence of solutions of the factional differential system is obtained. The uniqueness is established by using the Banach contraction principle.  相似文献   

10.
In this work, we investigate a boundary problem with non‐local conditions for mixed parabolic–hyperbolic‐type equation with three lines of type changing with Caputo fractional derivative in the parabolic part. We equivalently reduce considered problem to the system of second kind Volterra integral equations. In the parabolic part, we use solution of the first boundary problem with appropriate Green's function, and in hyperbolic parts, we use corresponding solutions of the Cauchy problem. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
Scalar one-dimensional conservation laws with a nonlocal diffusion term corresponding to a Riesz-Feller differential operator are considered. Solvability results for the Cauchy problem in L are adapted from the case of a fractional derivative with homogeneous symbol. The main interest of this work is the investigation of smooth shock profiles. In the case of a genuinely nonlinear smooth flux function we prove the existence of such travelling waves, which are monotone and satisfy the standard entropy condition. Moreover, the dynamic nonlinear stability of the travelling waves under small perturbations is proven, similarly to the case of the standard diffusive regularisation, by constructing a Lyapunov functional.  相似文献   

12.
We consider the solvability of fractional differential equations involving the Riesz fractional derivative. Our approach basically relies on the reduction of the problem considered to the equivalent nonlinear mixed Volterra and Cauchy-type singular integral equation and on the theory of fractional calculus. By establishing a compactness property of the Riemann–Liouville fractional integral operator on Lebesgue spaces and using the well-known Krasnoselskii's fixed point theorem, an existence of at least one solution is gleaned. An example is finally included to show the applicability of the theory.  相似文献   

13.
This paper is motivated from some recent papers treating the problem of the existence of a solution for impulsive differential equations with fractional derivative. We firstly show that the formula of solutions in cited papers are incorrect. Secondly, we reconsider a class of impulsive fractional differential equations and introduce a correct formula of solutions for a impulsive Cauchy problem with Caputo fractional derivative. Further, some sufficient conditions for existence of the solutions are established by applying fixed point methods. Some examples are given to illustrate the results.  相似文献   

14.
This work is concerned with the extension of the Jacobi spectral Galerkin method to a class of nonlinear fractional pantograph differential equations. First, the fractional differential equation is converted to a nonlinear Volterra integral equation with weakly singular kernel. Second, we analyze the existence and uniqueness of solutions for the obtained integral equation. Then, the Galerkin method is used for solving the equivalent integral equation. The error estimates for the proposed method are also investigated. Finally, illustrative examples are presented to confirm our theoretical analysis.  相似文献   

15.
A two-point boundary value problem is considered on the interval [0, 1], where the leading term in the differential operator is a Riemann-Liouville fractional derivative of order 2 ? δ with 0 < δ < 1. It is shown that any solution of such a problem can be expressed in terms of solutions to two associated weakly singular Volterra integral equations of the second kind. As a consequence, existence and uniqueness of a solution to the boundary value problem are proved, the structure of this solution is elucidated, and sharp bounds on its derivatives (in terms of the parameter δ) are derived. These results show that in general the first-order derivative of the solution will blow up at x = 0, so accurate numerical solution of this class of problems is not straightforward. The reformulation of the boundary problem in terms of Volterra integral equations enables the construction of two distinct numerical methods for its solution, both based on piecewise-polynomial collocation. Convergence rates for these methods are proved and numerical results are presented to demonstrate their performance.  相似文献   

16.
In this paper, we are concerned with Cauchy problems of fractional differential equations with Riemann–Liouville fractional derivatives in infinite-dimensional Banach spaces. We introduce the notion of fractional resolvent, obtain some its properties, and present a generation theorem for exponentially bounded fractional resolvents. Moreover, we prove that a homogeneous α-order Cauchy problem is well posed if and only if its coefficient operator is the generator of an α-order fractional resolvent, and we give sufficient conditions to guarantee the existence and uniqueness of weak solutions and strong solutions of an inhomogeneous α-order Cauchy problem.  相似文献   

17.
We investigate the boundary value problems for nonlinear fractional impulsive differential equations with p-Laplacian operator. By applying some standard fixed point theorems, we obtain new results on the existence and uniqueness of solutions. Examples are given to show the applicability of our results.  相似文献   

18.
In this paper, we shall discuss the properties of the well-known Mittag-Leffler function, and consider the existence and uniqueness of the solution of the periodic boundary value problem for a fractional differential equation involving a Riemann-Liouville fractional derivative by using the monotone iterative method.  相似文献   

19.
We discuss the solvability of integral equations associated with initial value problems for a nonlinear differential equation of fractional order. The differential operator is the Caputo fractional derivative and the inhomogeneous term depends on the fractional derivative of lower orders. We obtain the existence of at least one solution for integral equations using the Leray–Schauder Nonlinear Alternative for several types of initial value problems. In addition, using the Banach contraction principle, we establish sufficient conditions for unique solutions. Our approach in obtaining integral equations is the “reduction” of the fractional order of the integro-differential equations based on certain semigroup properties of the Caputo operator.  相似文献   

20.
We study the unique solvability of the Cauchy and Schowalter–Sidorov type problems in a Banach space for an evolution equation with a degenerate operator at the fractional derivative under the assumption that the operator acting on the unknown function in the equation is p-bounded with respect to the operator at the fractional derivative. The conditions are found ensuring existence of a unique solution representable by means of the Mittag-Leffler type functions. Some abstract results are illustrated by an example of a finite-dimensional degenerate system of equations of a fractional order and employed in the study of unique solvability of an initial-boundary value problem for the linearized Scott-Blair system of dynamics of a medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号