首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the mutualism system with three species if the effects of dispersion and time delays are both taken into consideration, then the densities of the cooperating species are governed by a coupled system of reaction–diffusion equations with time delays. The aim of this paper is to investigate the asymptotic behavior of the time-dependent solution in relation to a positive uniform solution of the corresponding steady-state problem in a bounded domain with Neumann boundary condition, including the existence and uniqueness of a positive steady-state solution. A simple and easily verifiable condition is given to ensure the global asymptotic stability of the positive steady-state solution. This result leads to the permanence of the mutualism system, the instability of the trivial and all forms of semitrivial solutions, and the nonexistence of nonuniform steady-state solution. The condition for the global asymptotic stability is independent of diffusion and time-delays as well as the net birth rate of species, and the conclusions for the reaction–diffusion system are directly applicable to the corresponding ordinary differential system and 2-species cooperating reaction–diffusion systems. Our approach to the problem is based on inequality skill and the method of upper and lower solutions for a more general reaction–diffusion system. Finally, the numerical simulation is given to illustrate our results.  相似文献   

2.
The aim of this paper is to investigate the asymptotic behavior of time-dependent solutions of a three-species reaction–diffusion system in a bounded domain under a Neumann boundary condition. The system governs the population densities of a competitor, a competitor–mutualist and a mutualist, and time delays may appear in the reaction mechanism. It is shown, under a very simple condition on the reaction rates, that the reaction–diffusion system has a unique constant positive steady-state solution, and for any nontrivial nonnegative initial function the corresponding time-dependent solution converges to the positive steady-state solution. An immediate consequence of this global attraction property is that the trivial solution and all forms of semitrivial solutions are unstable. Moreover, the state–state problem has no nonuniform positive solution despite possible spatial dependence of the reaction and diffusion. All the conclusions for the time-delayed system are directly applicable to the system without time delays and to the corresponding ordinary differential system with or without time delays.  相似文献   

3.
This paper is concerned with a class of quasilinear parabolic and elliptic equations in a bounded domain with both Dirichlet and nonlinear Neumann boundary conditions. The equation under consideration may be degenerate or singular depending on the property of the diffusion coefficient. The consideration of the class of equations is motivated by some heat-transfer problems where the heat capacity and thermal conductivity are both temperature dependent. The aim of the paper is to show the existence and uniqueness of a global time-dependent solution of the parabolic problem, existence of maximal and minimal steady-state solutions of the elliptic problem, including conditions for the uniqueness of a solution, and the asymptotic behavior of the time-dependent solution in relation to the steady-state solutions. Applications are given to some heat-transfer problems and an extended logistic reaction–diffusion equation.  相似文献   

4.
This paper presents an extension of the fluid approximation of a PEPA model by augmenting with diffusion to take spatial information into account, which is described by a reaction–diffusion system with homogeneous Neumann boundary conditions. The existence and uniqueness of the solution are given, positivity and boundedness of the solution to the system are also established. Moreover, sufficient conditions for the convergence are discussed under different cases. Our results show that the action rates determine the behavior of positive solutions. Numerical simulations are presented to illustrate the analytical results.  相似文献   

5.
Real life reaction–diffusion problems are characterized by their inherent or externally induced uncertainties in the design parameters. This paper presents a finite element solution of reaction–diffusion equations of Wick type. Using the Wick-product properties and the Wiener–Itô chaos expansion, the stochastic variational problem is reformulated to a set of deterministic variational problems. To obtain the chaos coefficients in the corresponding deterministic reaction–diffusion, we implement the usual Galerkin finite element method using standard techniques. Once this representation is computed, the statistics of the numerical solution can be easily evaluated. Computational results are shown for one- and two-dimensional test examples.  相似文献   

6.
We study an initial-boundary value problem for a singularly perturbed reaction–convection–diffusion system. Asymptotic analysis is used to construct a domain decomposition method for the system to describe the asymptotic nature of the interactions between the boundary layers, interior layers and shock layers. Our results show that the formation of boundary layers and shock layers depends upon initial and boundary data. Impinging shock can thicken interior layers at the point of intersection.  相似文献   

7.
This paper deals with a quasilinear parabolic–elliptic chemotaxis system with logistic source, under homogeneous Neumann boundary conditions in a smooth bounded domain. For the case of positive diffusion function, it is shown that the corresponding initial boundary value problem possesses a unique global classical solution which is uniformly bounded. Moreover, if the diffusion function is zero at some point, or a positive diffusion function and the logistic damping effect is rather mild, we proved that the weak solutions are global existence. Finally, it is asserted that the solutions approach constant equilibria in the large time for a specific case of the logistic source.  相似文献   

8.
In this paper we consider a mathematical model describing a dynamic linear elastic contact problem with nonmonotone skin effects. The subdifferential multivalued and multidimensional reaction–displacement law is employed. We treat an evolution hemivariational inequality of hyperbolic type which is a weak formulation of this mechanical problem. We establish a result on the existence of solutions to the Cauchy problem for the hemivariational inequality. This result is a consequence of an existence theorem for second order evolution inclusion. For the latter, using the parabolic regularization method, we obtain the solution as a limit when the viscosity term tends to zero.  相似文献   

9.
In this paper we study the numerical approximation of Turing patterns corresponding to steady state solutions of a PDE system of reaction–diffusion equations modeling an electrodeposition process. We apply the Method of Lines (MOL) and describe the semi-discretization by high order finite differences in space given by the Extended Central Difference Formulas (ECDFs) that approximate Neumann boundary conditions (BCs) with the same accuracy. We introduce a test equation to describe the interplay between the diffusion and the reaction time scales. We present a stability analysis of a selection of time-integrators (IMEX 2-SBDF method, Crank–Nicolson (CN), Alternating Direction Implicit (ADI) method) for the test equation as well as for the Schnakenberg model, prototype of nonlinear reaction–diffusion systems with Turing patterns. Eventually, we apply the ADI-ECDF schemes to solve the electrodeposition model until the stationary patterns (spots & worms and only spots) are reached. We validate the model by comparison with experiments on Cu film growth by electrodeposition.  相似文献   

10.
This paper presents several numerical tests on reaction–diffusion equations in the Turing space, affected by convective fields present in incompressible flows under the Schnakenberg reaction mechanism. The tests are performed in 2D on square unit, to which we impose an advective field from the solution of the problem of the flow in a cavity. The model developed consists of a decoupled system of equations of reaction–advection–diffusion, along with the Navier–Stokes equations of incompressible flow, which is solved simultaneously using the finite element method. The results show that the pattern generated by the concentrations of the reacting system varies both in time and space due to the effect exerted by the advective field.  相似文献   

11.
This paper is concerned with a compact finite difference method for solving systems of two-dimensional reaction–diffusion equations. This method has the accuracy of fourth-order in both space and time. The existence and uniqueness of the finite difference solution are investigated by the method of upper and lower solutions, without any monotone requirement on the nonlinear term. Three monotone iterative algorithms are provided for solving the resulting discrete system efficiently, and the sequences of iterations converge monotonically to a unique solution of the system. A theoretical comparison result for the various monotone sequences is given. The convergence of the finite difference solution to the continuous solution is proved, and Richardson extrapolation is used to achieve fourth-order accuracy in time. An application is given to an enzyme–substrate reaction–diffusion problem, and some numerical results are presented to demonstrate the high efficiency and advantages of this new approach.  相似文献   

12.
In this paper, the solution of Cauchy reaction–diffusion problem is presented by means of variational iteration method. Reaction–diffusion equations have special importance in engineering and sciences and constitute a good model for many systems in various fields. Application of variational iteration technique to this problem shows the rapid convergence of the sequence constructed by this method to the exact solution. Moreover, this technique does not require any discretization, linearization or small perturbations and therefore it reduces significantly the numerical computations.  相似文献   

13.
This paper is devoted to the analysis of nonnegative solutions for a degenerate parabolic–elliptic Patlak–Keller–Segel system with critical nonlinear diffusion in a bounded domain with homogeneous Neumann boundary conditions. Our aim is to prove the existence of a global weak solution under a smallness condition on the mass of the initial data, thereby completing previous results on finite blow-up for large masses. Under some higher regularity condition on solutions, the uniqueness of solutions is proved by using a classical duality technique.  相似文献   

14.
We study a mathematical model describing the dynamics of dislocation densities in crystals. This model is expressed as a 1D system of a parabolic equation and a first order Hamilton–Jacobi equation that are coupled together. We examine an associated Dirichlet boundary value problem. We prove the existence and uniqueness of a viscosity solution among those assuming a lower-bound on their gradient for all time including the initial time. Moreover, we show the existence of a viscosity solution when we have no such restriction on the initial data. We also state a result of existence and uniqueness of entropy solution for the initial value problem of the system obtained by spatial derivation. The uniqueness of this entropy solution holds in the class of bounded-from-below solutions. In order to prove our results on the bounded domain, we use an “extension and restriction” method, and we exploit a relation between scalar conservation laws and Hamilton–Jacobi equations, mainly to get our gradient estimates.  相似文献   

15.
Wavelet method is a recently developed tool in applied mathematics. Investigation of various wavelet methods, for its capability of analyzing various dynamic phenomena through waves gained more and more attention in engineering research. Starting from ‘offering good solution to differential equations’ to capturing the nonlinearity in the data distribution, wavelets are used as appropriate tools at various places to provide good mathematical model for scientific phenomena, which are usually modeled through linear or nonlinear differential equations. Review shows that the wavelet method is efficient and powerful in solving wide class of linear and nonlinear reaction–diffusion equations. This review intends to provide the great utility of wavelets to science and engineering problems which owes its origin to 1919. Also, future scope and directions involved in developing wavelet algorithm for solving reaction–diffusion equations are addressed.  相似文献   

16.
Periodic travelling wave solutions of reaction–diffusion equations were studied by many authors. The λ–ωλω type reaction–diffusion system is a notable special model that admits explicit periodic travelling wave solutions and was introduced by Kopell and Howard in 1973. There are now similar systems which are investigated by means of autonomous dynamics. In contrast, there are few papers which are concerned with non-autonomous cases. For this reason, we apply Mawhin’s continuation theorem to derive the existence of periodic travelling wave solutions for non-autonomous λ–ωλω systems, and we describe the ‘disappearance’ of periodic travelling wave solutions under special situations. Our main result is also illustrated by examples.  相似文献   

17.
We study a fractional reaction–diffusion system with two types of variables: activator and inhibitor. The interactions between components are modeled by cubical nonlinearity. Linearization of the system around the homogeneous state provides information about the stability of the solutions which is quite different from linear stability analysis of the regular system with integer derivatives. It is shown that by combining the fractional derivatives index with the ratio of characteristic times, it is possible to find the marginal value of the index where the oscillatory instability arises. The increase of the value of fractional derivative index leads to the time periodic solutions. The domains of existing periodic solutions for different parameters of the problem are obtained. A computer simulation of the corresponding nonlinear fractional ordinary differential equations is presented. For the fractional reaction–diffusion systems it is established that there exists a set of stable spatio-temporal structures of the one-dimensional system under the Neumann and periodic boundary conditions. The characteristic features of these solutions consist of the transformation of the steady-state dissipative structures to homogeneous oscillations or space temporary structures at a certain value of fractional index and the ratio of characteristic times of system.  相似文献   

18.
This paper is concerned with the asymptotic behavior of the solution for a coupled system of reaction-diffusion equations which describes the bacteria growth and the diffusion of histidine and buffer concentrations. Under the basic boundary condition of Neumann type or mixed type the coupled system can have infinitely many steady-state solutions. The present paper gives some explicit information on the asymptotic limit of the time-dependent solution in relation to these steady states. This information exhibits some rather distinct properties of the solutions between the Neumann boundary problem and the Dirichlet or mixed boundary problem.  相似文献   

19.
In this paper we study initial boundary value problems that describe reaction–diffusion phenomena in viscoelastic materials. The mathematical model, represented by an integro-differential equation coupled with an ordinary differential equation, is analyzed from theoretical and numerical viewpoints.  相似文献   

20.
A lattice Boltzmann model for the bimolecular autocatalytic reaction–diffusion equation is proposed. By using multi-scale technique and the Chapman–Enskog expansion on complex lattice Boltzmann equation, we obtain a series of complex partial differential equations, complex equilibrium distribution function and its complex moments. Then, the complex reaction–diffusion equation is recovered with higher-order accuracy of the truncation error. This equation can be used to describe the bimolecular autocatalytic reaction–diffusion systems, in which a rich variety of behaviors have been observed. Based on this model, the Fitzhugh–Nagumo model and the Gray–Scott model are simulated. The comparisons between the LBM results and the Alternative Direction Implicit results are given in detail. The numerical examples show that assumptions of source term can be used to raise the accuracy of the truncation error of the lattice Boltzmann scheme for the complex reaction–diffusion equation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号