首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chiral nanoporous metal-organic frameworks are constructed by using dicarboxyl-functionalized chiral Ni(salen) and Co(salen) ligands. The Co(salen)-based framework is shown to be an efficient and recyclable heterogeneous catalyst for hydrolytic kinetic resolution (HKR) of racemic epoxides with up to 99.5% ee. The MOF structure brings Co(salen) units into a highly dense arrangement and close proximity that enhances bimetallic cooperative interactions, leading to improved catalytic activity and enantioselectivity in HKR compared with its homogeneous analogues, especially at low catalyst/substrate ratios.  相似文献   

2.
Crosslinked polymeric salen-Co(III) complexes derived from a novel dialdehyde and a trialdehyde were synthesized and employed in the hydrolytic kinetic resolution (HKR) of terminal epoxides. Up to 99% ee were obtained with only 0.16-0.02 mol% of catalyst (based on catalytic unit).  相似文献   

3.
A palladium(II)-catalyzed hydroxycyclization-carbonylation-lactonization sequence with appropriate pent-4-ene-1,3-diols provides efficient access to the bicyclic gamma-lactones, 5-n-butyl- and 5-n-hexyltetrahydrofuro-[3,2-b]furan-2(3H)-ones (3) and (4), respectively, in both racemic and enantiomeric forms. Some of the substrate pent-4-ene-1,3-diols of high enantiomeric excess (ee) have been derived from racemic terminal epoxides by hydrolytic kinetic resolution (HKR) using cobalt (III)-salen complexes. (9Z,12R)-(+)-Ricinoleic acid also serves as a "chiral pool" source of other pent-4-ene-1,3-diols. These syntheses and enantioselective gas chromatography confirm the structures and absolute stereochemistry of the lactones in some species of parasitic wasps (Hymenoptera: Braconidae). The highly abundant 5-n-hexyltetrahydrofuro-[3,2-b]furan-2(3H)-one (4) in Diachasmimorpha kraussii and D. longicaudata is of high ee (>99%) with (3aR,5R,6aR) stereochemistry.  相似文献   

4.
The asymmetric hydrolytic kinetic resolution (HKR) of racemic terminal epoxides by new easily synthesized dimeric chiral (salen)Co bearing Al, provides a practical and straightforward method for the synthesis of enantiomerically enriched terminal epoxides (>99% ee) and diols. An inorganic acid, HCl is applied first time for the asymmetric ring opening reaction of terminal epoxides. Reactions are conveniently carried out at room temperature under an air atmosphere.  相似文献   

5.
Although application of light-fluorous techniques facilitates the isolation of reaction products from the hydrolytic kinetic resolution (HKR) of terminal epoxides catalysed by cobalt complexes of salen ligands, the extension of the original fluorous biphasic approach to this reaction is far from being a trivial exercise. The nature of the counter anion has a dramatic effect on the catalytic activity of heavily fluorinated chiral (salen) cobalt(III) complexes. Excellent enantioselectivities are obtained in the fluorous biphasic HKR of 1,2-hexene oxide when fluorinated anions are introduced (e.e.s up to 99% both for the diol and the epoxide), with C8F17COO- affording reaction rates even higher than those observed with non-fluorous systems.  相似文献   

6.
Enantioselective alpha-deprotonation of achiral epoxides 1, 21, and 26 using organolithiums in the presence of (-)-sparteine 2 and subsequent electrophile trapping gives access to enantioenriched trisubstituted epoxides 9-17, 22, 23, 27 and 28 (in up to 86% ee).  相似文献   

7.
The (salen)Co(III)-catalyzed hydrolytic kinetic resolution (HKR) of terminal epoxides is a bimetallic process with a rate controlled by partitioning between a nucleophilic (salen)Co-OH catalyst and a Lewis acidic (salen)Co-X catalyst. The commonly used (salen)Co-OAc and (salen)Co-Cl precatalysts undergo complete and irreversible counterion addition to epoxide during the course of the epoxide hydrolysis reaction, resulting in quantitative formation of weakly Lewis acidic (salen)Co-OH and severely diminished reaction rates in the late stages of HKR reactions. In contrast, (salen)Co-OTs maintains high reactivity over the entire course of HKR reactions. We describe here an investigation of catalyst partitioning with different (salen)Co-X precatalysts and demonstrate that counterion addition to epoxide is reversible in the case of the (salen)Co-OTs. This reversible counterion addition results in stable partitioning between nucleophilic and Lewis acidic catalyst species, allowing highly efficient catalysis throughout the course of the HKR reaction.  相似文献   

8.
The highly enantioselective hydrolytic kinetic resolution (HKR) of racemic terminal epoxides by bimetallic chiral (salen)Co and (salen)Co(III)-OAc mixture provides a simple and effective method for the synthesis of enantiomerically enriched terminal epoxides (ee > 99%) and diols. At the equimolar amounts of bimetallic chiral (salen)Co and (salen)Co(II)-OAc, the catalytic activity increases more than two times in comparison with (salen)Co(III)-OAc used alone. The mixed catalytic system can be recycled and reused. No significant loss of catalytic activity was observed after three runs.  相似文献   

9.
[reaction: see text] The first asymmetric aminolysis of trans-aromatic epoxides with anilines is described. The process affords enantioenriched anti-beta-amino alcohols in up to 99% ee. The complete regio- and diastereoselectivity observed uses commercially available [Cr(Salen)Cl] as a Lewis acid catalyst and in combination with a very simple experimental procedure renders the present reaction a facile and practical tool for the synthesis of chiral nonracemic anti-beta-amino alcohols.  相似文献   

10.
The mechanism of the hydrolytic kinetic resolution (HKR) of terminal epoxides was investigated by kinetic analysis using reaction calorimetry. The chiral (salen)Co-X complex (X = OAc, OTs, Cl) undergoes irreversible conversion to (salen)Co-OH during the course of the HKR and thus serves as both precatalyst and cocatalyst in a cooperative bimetallic catalytic mechanism. This insight led to the identification of more active catalysts for the HKR of synthetically useful terminal epoxides.  相似文献   

11.
A chiral cobalt(III) complex (1e) was synthesized by the interaction of cobalt(II) acetate and ferrocenium hexafluorophosphate with a chiral dinuclear macrocyclic salen ligand that was derived from 1R,2R-(-)-1,2-diaminocyclohexane with trigol bis-aldehyde. A variety of epoxides and glycidyl ethers were suitable substrates for the reaction with water in the presence of chiral macrocyclic salen complex 1e at room temperature to afford chiral epoxides and diols by hydrolytic kinetic resolution (HKR). Excellent yields (47% with respect to the epoxides, 53% with respect to the diols) and high enantioselectivity (ee>99% for the epoxides, up to 96% for the diols) were achieved in 2.5-16 h. The Co(III) macrocyclic salen complex (1e) maintained its performance on a multigram scale and was expediently recycled a number of times. We further extended our study of chiral epoxides that were synthesized by using HKR to the synthesis of chiral drug molecules (R)-mexiletine and (S)-propranolol.  相似文献   

12.
Novel bimetallic chiral Co (salen) complexes bearing transition‐metal salts have been synthesized. The easily prepared complexes exhibited very high catalytic reactivity and enantioselectivity in hydrolytic kinetic resolution (HKR) of racemic terminal epoxides and consequently provided enantiomerically enriched epoxides (up to 99% ee).  相似文献   

13.
The Co(III)--salen-catalyzed (salen=N,N'-bis(salicylidene)ethylenediamine dianion) hydrolytic kinetic resolution (HKR) of racemic epoxides has emerged as a highly attractive and efficient method of synthesizing chiral C(3) building blocks for intermediates in larger, more complex molecules. HKR reaction rates have displayed a second order dependency on the concentration of active sites, and thus researchers have proposed a bimetallic transition state for the HKR mechanism. Here we report the utilization of pendant Co(III)--salen catalysts on silica supported polymer brushes as a catalyst for the HKR of epichlorohydrin. The novel polymer brush architecture provided a unique framework for promoting site-site interactions as required in the proposed bimetallic transition state of the HKR mechanism. Furthermore, the polymer brushes mimic the environment of soluble polymer-based catalysts, whereas the silica support permitted facile recovery and reuse of the catalyst. The polymer brush catalyst displayed increased activities over the soluble Jacobsen Co--salen catalyst and was observed to retain its high enantioselectivities (>99 %) after each of five reactions despite decreasing activities. Analysis indicated decomposition of the salen ligand as an underlying cause of catalyst deactivation.  相似文献   

14.
《Tetrahedron: Asymmetry》2005,16(3):657-660
The recently developed hydrolytic kinetic resolution (HKR) of epoxides catalysed by the Co-Jacobsen catalyst, is one of the most useful methods to obtain enantiomerically pure epoxides and/or diols. Several parameters can significantly influence the homogeneous reaction. Several factors including the used solvent, the activation of the catalyst and the use of surfactants, are investigated.  相似文献   

15.
张国安  夏敏 《合成化学》2012,20(2):235-238,243
研究了3-(1-萘氧基)-1,2-环氧丙烷[(R,S)-1]在Salen Co(Ⅲ)催化下的水解动力学拆分(HKR)。以转化率和ee值为指标,考察了催化剂用量、底物用量、反应温度、反应时间、溶剂种类等对HKR反应的影响。最佳HKR条件为:(R,S)-1 10 mmol,w[Salen Co(Ⅲ)]=0.75%,THF 1 mL,水0.5 eq,于25℃水解40 h,(R,S)-1的转化率为49.5%,(S)-1的ee为99.5%。  相似文献   

16.
A dichlororuthenium(IV) complex of 5,10,15,20-tetrakis[(1S,4R,5R,8S)-1,2,3,4,5,6,7,8-octahydro-1,2:5,8-dimethanoanthrance-9-yl]porphyrin, [Ru(IV)(D(4)-Por)Cl(2)] (1), was prepared by heating [Ru(II)(D(4)-Por)(CO)(MeOH)] (2) in refluxing CCl(4). Complex 1 is characterized by (1)H NMR (paramagnetically shifted pyrrolic protons at delta(H) = -52.3 ppm), FAB-mass spectroscopies, and magnetic susceptibility measurement (mu(eff) = 3.1 mu(B)). The ruthenium complex exhibits remarkable catalytic activity toward enantioselective alkene epoxidation using 2,6-dichloropyridine N-oxide (Cl(2)pyNO) as terminal oxidant. The Ru(IV)-catalyzed styrene epoxidation is achieved within 2 h (versus 48 h for the 2-catalyzed reaction), and optically active styrene oxide was obtained in 69% ee and 84% yield (875 turnovers). Likewise, substituted styrenes and some conjugated cis-disubstituted alkenes (e.g., cis-beta-methylstyrene, cis-1-phenyl-3-penten-1-yne, 1,2-dihydronaphthalene, and 2,2-dimethylchromenes) are converted effectively to their organic epoxides in 50-80% ee under the Ru(IV)-catalyzed conditions, and more than 850 turnovers of epoxides have been attained. When subjecting 1 to four repetitive uses by recharging the reaction mixture with Cl(2)pyNO and styrene, styrene oxide was obtained in a total of 2190 turnovers and 69% ee. UV-vis and ESI-mass spectral analysis of the final reaction mixture revealed that a ruthenium-carbonyl species could have been formed during the catalytic reaction, leading to the apparent catalyst deactivation. We prepared a heterogeneous chiral ruthenium porphyrin catalyst by immobilizing 1 into sol-gel matrix. The heterogeneous catalyst is highly active toward asymmetric styrene epoxidation producing styrene oxide in 69% ee with up to 10,800 turnovers being achieved. The loss of activity of the Ru/sol-gel catalyst is ascribed to catalyst leaching and/or deactivation. On the basis of Hammett correlation (rho(+) = -1.62, R = 0.99) and product analysis, a dioxoruthenium(VI) porphyrin intermediate is not favored.  相似文献   

17.
In the chiral Co(III)(salen)-catalysed HKR of racemic epoxides, in the presence of ionic liquids, Co(II)(salen) complex is oxidised without acetic acid to catalytically active Co(III)(salen) complex during reaction and, moreover, this oxidation state is stabilised against reduction to Co(II) complex which enables the reuse of the recovered catalyst for consecutive reactions without extra reoxidation.  相似文献   

18.
Rhodium‐catalyzed C(sp2)−H functionalization reactions of 4‐aryl‐5‐pyrazolones followed by [3+2] annulation reactions with alkynes provide rapid access to highly enantioenriched five‐membered‐ring 4‐spiro‐5‐pyrazolones. The use of a chiral SCpRh catalyst enabled the synthesis of a large range of spiropyrazolones with all‐carbon quaternary stereogenic centers in up to 99 % yield and 98 % ee from readily available substrates.  相似文献   

19.
A chiral cobalt(III) complex ( 1 e ) was synthesized by the interaction of cobalt(II) acetate and ferrocenium hexafluorophosphate with a chiral dinuclear macrocyclic salen ligand that was derived from 1R,2R‐(?)‐1,2‐diaminocyclohexane with trigol bis‐aldehyde. A variety of epoxides and glycidyl ethers were suitable substrates for the reaction with water in the presence of chiral macrocyclic salen complex 1 e at room temperature to afford chiral epoxides and diols by hydrolytic kinetic resolution (HKR). Excellent yields (47 % with respect to the epoxides, 53 % with respect to the diols) and high enantioselectivity (ee>99 % for the epoxides, up to 96 % for the diols) were achieved in 2.5–16 h. The CoIII macrocyclic salen complex ( 1 e ) maintained its performance on a multigram scale and was expediently recycled a number of times. We further extended our study of chiral epoxides that were synthesized by using HKR to the synthesis of chiral drug molecules (R)‐mexiletine and (S)‐propranolol.  相似文献   

20.
A venerable scaffold for asymmetric synthesis and drug development, chiral 5-substituted oxazolidinones are obtained in almost enantiomerically pure form (up to 99.9% ee) starting from racemic terminal epoxides. The salient features of this process include the very simple and convenient experimental protocol and the employment of a readily accessible catalyst and inexpensive, easily handled starting materials. An enantioconvergent approach for the total conversion of racemic epoxide into a single stereoisomeric oxazolidinone is also described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号