共查询到20条相似文献,搜索用时 0 毫秒
1.
Demirkan K Mathew A Weiland C Yao Y Rawlett AM Tour JM Opila RL 《The Journal of chemical physics》2008,128(7):074705
We determined the shifts in the energy levels of approximately 15 nm thick poly[2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene] films deposited on various substrates including self-assembled monolayer (SAM) modified Au surfaces using photoelectron spectroscopy. As the unmodified substrates included Au, indium tin oxide, Si (with native oxide), and Al (with native oxide), a systematic shift in the detected energy levels of the organic semiconductor was observed to follow the work function values of the substrates. Furthermore, we used polar SAMs to alter the work function of the Au substrates. This suggests the opportunity to control the energy level positions of the organic semiconductor with respect to the electrode Fermi level. Photoelectron spectroscopy results showed that, by introducing SAMs on the Au surface, we successfully increased and decreased the effective work function of Au surface. We found that in this case, the change in the effective work function of the metal surface was not reflected as a shift in the energy levels of the organic semiconductor, as opposed to the results achieved with different substrate materials. Our study showed that when a substrate is modified by SAMs (or similarly by any adsorbed molecules), a new effective work function value is achieved; however, it does not necessarily imply that the new modified surface will behave similar to a different metal where the work function is equal to the effective work function of the modified surface. Various models and their possible contribution to this result are discussed. 相似文献
2.
The modification of surfaces with self-assembled monolayers (SAMs) containing multiple different molecules, or containing molecules with multiple different functional components, or both, has become increasingly popular over the last two decades. This explosion of interest is primarily related to the ability to control the modification of interfaces with something approaching molecular level control and to the ability to characterise the molecular constructs by which the surface is modified. Over this time the level of sophistication of molecular constructs, and the level of knowledge related to how to fabricate molecular constructs on surfaces have advanced enormously. This critical review aims to guide researchers interested in modifying surfaces with a high degree of control to the use of organic layers. Highlighted are some of the issues to consider when working with SAMs, as well as some of the lessons learnt (169 references). 相似文献
3.
《Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy》1980,36(11):935-940
In the i.r. spectra of 1:1 and 2:1 complexes of thioacetamide with proton acceptors, the NH2 symmetric stretching vibration splits into a doublet, due to Fermi resonance (FR) with the first overtone of the NH2 bending mode. FR coupling coefficients and the distance of the unperturbed levels (Δ0) have been determined. Δ0 seems to be larger for 2:1 complexes. A level inversion of the FR bands, due to the change in the strength of the H-bonding to the solvent, has been detected. FR interaction has been characterized by FR displacement parameter (ΔF = Δ-Δ0) where Δ stands for the distance between the FR bands. 相似文献
4.
Hu WS Tao YT Hsu YJ Wei DH Wu YS 《Langmuir : the ACS journal of surfaces and colloids》2005,21(6):2260-2266
Pentacene films deposited on self-assembled monolayers (SAMs) bearing different terminal functional groups have been studied by reflection-absorption IR, grazing angle XRD, NEXAFS, AFM, and SEM analyses. A film with pentacene molecules nearly perpendicularly oriented was observed on Au surfaces covered with an SAM of alkanethiol derivative of X-(CH2)(n)-SH, with X = -CH(3), -COOH, -OH, -CN, -NH(2), C(60), or an aromatic thiol p-terphenylmethanethiol. On the other hand, a film with the pentacene molecular plane nearly parallel to the substrate surface was found on bare Au surface. A similar molecular orientation was found in thinner ( approximately 5 nm) and thicker (100 nm) deposited films. Films deposited on different surfaces exhibit distinct morphologies: with apparently smaller and rod-shaped grains on clean bare Au surface but larger and islandlike crystals on SAM-modified surfaces. X-ray photoemission electron microscopy (X-PEEM) was used to analyze the orientation of pentacene molecules deposited on a SAM-patterned Au surface. With the micro-NEXAFS spectra and PEEM image analysis, the microarea-selective orientation control on Au was characterized. The ability to control the packing orientation in organic molecular crystals is of great interest in fabricating organic field effect transistors because of the anisotropic nature of charge transport in organic semiconducting materials. 相似文献
5.
Pair coupling between a chiral molecule and an achiral molecule can induce weak circular dichroism in the achiral partner, as is well known in induced circular dichroism. Here the effect of the same coupling on the chiral partner is analyzed. The effect is an increase or decrease in the rotatory strength that may be detectable under conditions where the effect is enhanced by a near-resonance. 相似文献
6.
《Chemical physics》2006,325(1):121-128
The effect of oxygen doping on titanyl phthalocyanine (TiOPc) film was investigated by ultraviolet photoelectron spectroscopy (UPS). The electronic structure of the interface formed between TiOPc films deposited on highly oriented pyrolytic graphite (HOPG) was clearly different between the films prepared in ultrahigh vacuum (UHV) and under O2 atmosphere (1.3 × 10−2 Pa). The film deposited in UHV showed downward band bending characteristic of n-type semiconductor, possibly due to residual impurities working as unintentional n-type dopants. On the other hand, the film deposited under O2 atmosphere showed upward band bending characteristic of p-type semiconductor. Such trends, including the conversion from n- to p-type, are in excellent correspondence with reported field effect transistor characteristics of TiOPc, and clearly demonstrates that bulk TiOPc film was p-doped with oxygen. In order to examine the Fermi level alignment between TiOPc film and the substrate, the energy of the highest occupied molecular orbital (HOMO) of TiOPc relative to the Fermi level of the conductive substrate was determined for various substrates. The alignment between the Fermi level of conductive substrate and Fermi level of TiOPc film at fixed energy in the bandgap was not observed for the TiOPc film prepared in UHV, possibly because of insufficient charge density in the TiOPc film. This situation was drastically changed when the TiOPc film exposed to O2, and clear alignment of the Fermi level fixed at 0.6 eV above the HOMO with the Fermi level of the conducting substrate was observed, probably by p-type doping effect of oxygen. These are the first direct and quantitative information about bulk oxygen doping from the viewpoint of the electronic structure. These results suggest that similar band bending with Fermi level alignment may be also achieved for other organic semiconductors under practical device conditions, and also call for caution at the comparison of experimental results obtained under UHV and ambient atmosphere. 相似文献
7.
Magnetic alignment of self-assembled anthracene organogel fibers 总被引:1,自引:0,他引:1
Shklyarevskiy IO Jonkheijm P Christianen PC Schenning AP Del Guerzo A Desvergne JP Meijer EW Maan JC 《Langmuir : the ACS journal of surfaces and colloids》2005,21(6):2108-2112
High magnetic fields are shown to be remarkably effective to orient self-assembled 2,3-bis-n-decyloxyanthracene (DDOA) fibers during organogel preparation. Magnetic orientation of DDOA results in a highly organized material displaying a fiber-orientation order parameter of 0.85, a large linear birefringence, and fluorescence dichroism. The aligned organogel is stable after removal of the magnetic field at room temperature and consists of fibers oriented perpendicular to the magnetic field direction, as shown by scanning electron microscopy. Models for the molecular organization within the gel fibers are discussed upon quantitative analysis of the birefringence. Prospectively, magnetic alignment can be used to improve specific properties of organogel materials. 相似文献
8.
Heiko Peisert Andreas Petr Lothar Dunsch Thomas Chassé Martin Knupfer 《Chemphyschem》2007,8(3):386-390
Photoemission studies of interfaces between molecular organic semiconductors and the conducting polymer PEDOT:PSS [mixture of PEDOT (poly-3,4-ethylenedioxy-thiophene) and PSS (polystyrenesulfonate)] demonstrate that it is impossible to control the charge injection barriers at such contacts by either a systematic change of the work function of the conducting polymer or that of the organic semiconductor. Instead, these interfaces are, in all cases, characterized by a charge transfer across the interface and a resulting Fermi level pinning. Thus interfacial charge barriers do not explain observed changes in device parameters as a function of the work function of the polymer electrode. 相似文献
9.
Nirmalya K. Chaki M. Aslam Jadab Sharma K. Vijayamohanan 《Journal of Chemical Sciences》2001,113(5-6):659-670
Self-assembly provides a simple route to organise suitable organic molecules on noble metal and selected nanocluster surfaces
by using monolayers of long chain organic molecules with various functionalities like -SH,-COOH,-NH2, silanes etc. These surfaces can be effectively used to build-up interesting nano level architectures. Flexibility with respect
to the terminal functionalities of the organic molecules allows the control of the hydrophobicity or hydrophilicity of metal
surface, while the selection of length scale can be used to tune the distant-dependent electron transfer behaviour. Organo-inorganic
materials tailored in this fashion are extremely important in nanotechnology to construct nanoelctronic devices, sensor arrays,
supercapacitors, catalysts, rechargeable power sources etc. by virtue of their size and shape-dependent electrical, optical
or magnetic properties. The interesting applications of monolayers and monolayer-protected clusters in materials chemistry
are discussed using recent examples of size and shape control of the properties of several metallic and semiconducting nanoparticles.
The potential benefits of using these nanostructured systems for molecular electronic components are illustrated using Au
and Ag nanoclusters with suitable bifunctional SAMs. 相似文献
10.
Using contact angle measurements, surface force balance experiments, and AFM imaging, we have investigated the process of self-assembly of surfactants onto mica and the subsequent stability of those layers in pure water. In the case of cetyltrimethylammonium bromide (CTAB), the stability of a monolayer when immersed in pure water is found to be dependent on initial immersion time in surfactant, which is likely to be caused by an increase in the proportion of ion-exchange to ion-pair adsorption when incubated in surfactant for longer periods of time. Infinite dilution of the surfactant solution before withdrawal of the sample is found to have little effect on the stability of the resulting layer in pure water. The nature of the counterion is found to affect dramatically the stability of a self-assembled surfactant monolayer: cetyltrimethylammonium fluoride (CTAF) forms a layer that is much more stable in water than CTAB, which is likely to be due to faster and more complete ion-exchange with the mica surface for CTAF. Surface force balance experiments show that when the hydrophobic monolayer is immersed in pure water it does not simply dissolve into the water; instead it rearranges, possibly to patches of bilayer or hemimicelles. The time scale of this rearrangement agrees well with the time scale of the change from a hydrophobic to more hydrophilic surface observed using contact angle measurements. AFM imaging has also in some cases shown an evolution from an even monolayer to patches of bilayer. 相似文献
11.
Maxisch M Thissen P Giza M Grundmeier G 《Langmuir : the ACS journal of surfaces and colloids》2011,27(10):6042-6048
Barrier properties of self-assembled octadecylphosphonic acid (ODPA) monolayers on plasma-modified oxyhydroxide-covered aluminum surfaces were analyzed by means of in situ photoelastic modulated infrared reflection absorption spectroscopy (PM-IRRAS). The surface hydroxyl density prior to ODPA adsorption was increased by means of a low-temperature H(2)O-plasma treatment. Adsorption isotherms of H(2)O on ODPA self-assembled monolayer (SAM) modified surfaces in comparison to bare oxide covered aluminum surfaces showed that the ODPA SAM leads to a strongly reduced amount of adsorbed water based on the inability of water to form hydrogen bonds to the low-energy aliphatic surface. However, the ODPA SAM covered surfaces did not show a significant inhibition of the H(2)O/D(2)O isotope exchange reaction between the D(2)O gas phase and the hydroxyl groups of the aluminum oxyhydroxide film, as the interfacial layer between the ODPA SAM and the metal substrate, while the interfacial phosphonate group as well as the orientation of the SAM is not affected by the adsorption of water. It can be followed that the strong adhesion promoting and high corrosion resistances of organophosphonate monolayers on oxyhydroxide-covered aluminum is a result of the strong acid-base interaction of the phosphonate headgroup with the Al ions in the oxyhydroxide film, even in the presence of high interfacial water activity and the molecular interactions of the aliphatic chains. However, the barrier effect of such monolayers on the transport of water is negligible. 相似文献
12.
Auer F Nelles G Sellergren B 《Chemistry (Weinheim an der Bergstrasse, Germany)》2004,10(13):3232-3240
The reversible self-assembly of a series of bipolar amphiphiles, alpha,omega-bis(3- or 4-amidinophenoxy)alkanes (chain length n = 5-12), on mercaptoalkanoic acid-functionalized gold surfaces (chain length n = 10, 11, 14, 15) has been studied by in-situ ellipsometry, IR reflection absorption spectroscopy (IRAS), and atomic force microscopy (AFM). The layer order, amphiphile orientation, and tendency to form bilayers depends on the position of the amidine substituent, the alkyl chain length of both the amidine amphiphile and the underlying acid self-assembled monolayer (SAM), and whether the amidine alkyl chain contained an even or odd number of methylene groups. Thus, para-substituted bisbenzamidines containing more than six methylene groups (n>6) and with an odd number (n = 7, 9, 11) tended to form bilayered structures, whereas those containing an even number formed monolayers when adsorbed on SAMs of the long-chain acids (n = 14, 15). This behavior also correlated with the average tilt angle of the benzene moieties of the amphiphiles, as estimated by IRAS. The odd-numbered chains gave lower tilt angles than the even-numbered ones, and a possible model that accounts for these results is proposed. IRAS also revealed a higher order of the odd-numbered chains and an increasing hydrogen-bonding contribution with increasing chain length. Additional evidence for the proposed bilayered assemblies and their reversibility was obtained by AFM. Images obtained from the assembly of decamidine on a SAM of mercaptohexadecanoic acid in a pH 9 borate buffer revealed domains of similar size to that of the underlying acid SAM (20-30 nm), but less densely packed. By acidifying the solution, the second layer was destabilized and a very smooth layer with few defects appeared. Further acidification to pH 3 also destabilized the first layer. 相似文献
13.
Kim G Wang S Lu W Buongiorno Nardelli M Bernholc J 《The Journal of chemical physics》2008,128(2):024708
The effect of metal-molecule coupling on electron transport is examined in the prototypical case of alkane chains sandwiched between gold contacts and bridged by either amine or thiol groups. The results show that end group functionalization plays a crucial role in controlling electron transport, and that the symmetries and spatial extent of orbitals near the Fermi level control the conductivity rather than the strength of the bonding. For amine/Au and thiol/Au junctions, a crossover in conductivity with increasing bias is predicted. 相似文献
14.
Huijser A Suijkerbuijk BM Klein Gebbink RJ Savenije TJ Siebbeles LD 《Journal of the American Chemical Society》2008,130(8):2485-2492
The photosynthetic apparatus of green sulfur bacteria, the chlorosome, is generally considered as a highly efficient natural light-harvesting system. The efficient exciton transport through chlorosomes toward the reaction centers originates from self-assembly of the bacteriochlorophyll molecules. The aim of the present work is to realize a long exciton diffusion length in an artificial light-harvesting system using the concept of self-assembled natural chlorosomal chromophores. The ability to transport excitons is studied for porphyrin derivatives with different tendencies to form molecular stacks by self-assembly. A porphyrin derivative denoted as ZnOP, containing methoxymethyl substituents ({meso-tetrakis[3,5-bis(methoxymethyl)phenyl]porphyrinato}zinc(II)) is found to form self-assembled stacks, in contrast to a derivative with tert-butyl substituents, ZnBuP ({meso-tetrakis[3,5-bis(tert-butyl)phenyl]porphyrinato}zinc(II)). Exciton transport and dissociation in a bilayer of these porphyrin derivatives and TiO2 are studied using the time-resolved microwave conductivity (TRMC) method. For ZnOP layers it is found that excitons undergo diffusive motion between the self-assembled stacks, with the exciton diffusion length being as long as 15 +/- 1 nm, which is comparable to that in natural chlorosomes. For ZnBuP a considerably shorter exciton diffusion length of 3 +/- 1 nm is found. Combining these exciton diffusion lengths with exciton lifetimes of 160 ps for ZnOP and 74 ps for ZnBuP yields exciton diffusion coefficients equal to 1.4 x 10(-6) m2/s and 1 x 10(-7) m2/s, respectively. The larger exciton diffusion coefficient for ZnOP originates from a strong excitonic coupling for interstack energy transfer. The findings show that energy transfer is strongly affected by the molecular organization. The efficient interstack energy transfer shows promising prospects for application of such self-assembled porphyrins in optoelectronics. 相似文献
15.
Bultinck P Kuppens T Gironés X Carbó-Dorca R 《Journal of chemical information and computer sciences》2003,43(4):1143-1150
The use of the molecular quantum similarity overlap measure for molecular alignment is investigated. A new algorithm is presented, the quantum similarity superposition algorithm (QSSA), expressing the relative positions of two molecules in terms of mutual translation in three Cartesian directions and three Euler angles. The quantum similarity overlap is then used to optimize the mutual positions of the molecules. A comparison is made with TGSA, a topogeometrical approach, and the influence of differences on molecular clustering is discussed. 相似文献
16.
Wiesner K Naves de Brito A Sorensen SL Kosugi N Björneholm O 《The Journal of chemical physics》2005,122(15):154303
Core excitation from terminal oxygen OT in O3 is shown to be an excitation from a localized core orbital to a localized valence orbital. The valence orbital is localized to one of the two equivalent chemical bonds. We experimentally demonstrate this with the Auger-Doppler effect which is observable when O3 is core excited to the highly dissociative OT1s(-1)7a1 1 state. Auger electrons emitted from the atomic oxygen fragment carry information about the molecular orientation relative to the electromagnetic-field vector at the moment of excitation. The data together with analytical functions for the electron-peak profiles give clear evidence that the preferred molecular orientation for excitation only depends on the orientation of one bond, not on the total molecular orientation. The localization of the valence orbital "7a1" is caused by mixing of the valence orbital "5b2" through vibronic coupling of antisymmetric stretching mode with b2 symmetry. To the best of our knowledge, it is the first discussion of the localization of a core excitation of O3. This result explains the success of the widely used assumption of localized core excitation in adsorbates and large molecules. 相似文献
17.
Several hyperbranched polyimides (HBPIs) were applied in liquid crystal (LC) alignment layers and exhibited outstanding performance for LC alignment. The maximum pretilt angle was above 8°, and the minimum pretilt angle was 4.2°. The results of atomic force microscope measurement disclosed that a lot of grooves were aligned parallel to the rubbing direction and found that the grooves were not main factor for LC alignment. The LC alignment and pretilt angles are unambiguously associated with the intrinsic HBPI chemical structures. The results of thermal gravimetric analysis and ultraviolet–visible spectra showed that the HBPIs had good thermal stability and excellent transmittance. T5 and T10 were higher than 360°C and 400°C, respectively. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
18.
The magnetic interactions in organic diradicals, dinuclear inorganic complexes and ionic solids are presented from a unified point of view. Effective Hamiltonian theory is revised to show that, for a given system, it permits the definition of a general, unbiased, spin model Hamiltonian. Mapping procedures are described which in most cases permit one to extract the relevant magnetic coupling constants from ab initio calculations of the energies of the pertinent electronic states. Density functional theory calculations within the broken symmetry approach are critically revised showing the contradictions of this procedure when applied to molecules and solids without the guidelines of the appropriate mapping. These concepts are illustrated by describing the application of state-of-the-art methods of electronic structure calculations to a series of representative molecular and solid state systems. 相似文献
19.
Vassiliki A. Tegoulia Stuart L. Cooper 《Colloids and surfaces. B, Biointerfaces》2002,24(3-4):217-228
Staphylococcus aureus adhesion on self-assembled monolayers (SAMs) formed by the adsorption of alkanethiols on transparent gold films has been studied in real time under well-defined flow conditions using a radial flow chamber and an automated videomicroscopy system. SAMs terminated with methyl, hydroxyl, carboxylic acid and tri(ethylene oxide) groups were investigated. SAMs were characterized using contact angle measurements, ellipsometry and X-ray photoelectron spectroscopy. Adhesion experiments using the Newman strain of S. aureus were performed on bare monolayers and monolayers pre-incubated with fibrinogen. Adhesion was found to be lowest on the ethylene oxide-bearing surfaces, followed by the hydroxyl surfaces. Adhesion on the carboxylic- and methyl-terminated SAMs was much higher. Bacterial adhesion was higher on the hydrophobic surfaces. Pre-incubation of surfaces with fibrinogen minimized the effect of the surface properties of the substrate. Adhesion was increased on all surfaces when fibrinogen was present and no significant differences were observed between adhesion to the different SAMs. This study showed that surfaces rich in ethylene oxide groups can be effectively used to prevent bacterial adhesion. However, under physiological conditions, most of the substrate properties are masked by the presence of the adsorbed protein layer and the effect of substrate properties on bacteria adhesion under flow is minimal. 相似文献