首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Abstract— The hematoporphyrin-sensitized production of singlet molecular oxygen, O2(1Δg), has been investigated in methanol and in aqueous solution. The quantum yield for formation of O2(1Δg) (ΦΔ) has been measured by both steady-state (oxygen consumption) and time-resolved (near-infrared luminescence) methods. In methanol, both techniques indicate that ΦΔ= 0.76 and the value remains independent of sensitizer concentration over a wide range. This finding is consistent with the dye persisting in a monomelic form in methanol solution. In contrast, ΦΔ decreases markedly with increasing sensitizer concentration in water due to dimerization of the dye. Analysis of the steady-state data indicates ΦΔ values of 0.74 and 0.12, respectively, for monomer and dimer. It is further shown that the efficiency whereby quenching of the triplet state by O2 results in generation of O2(1Δg) is substantially lower for the dimer than for the corresponding monomer. Because monomer and dimer possess quite different absorption spectral profiles, the efficacy for photodynamic action with hematoporphyrin exhibits a pronounced wavelength dependence.  相似文献   

2.
Abstract— Two new sensitizers are introduced for a potential use in photodynamic therapy: Zn2+- and MG2+-tetrabenzoporphyrin (ZnTBP and MgTBP). A comparative study of the quantum yields of singlet oxygen generation (ΦΔ) of hematoporphyrin derivative (HpD), Photofrin II (PF-II), Zn2+-phthalocyanine tetrahydroxyl [ZnPC(OH)4] and the newly introduced sensitizers ZnTBP and MgTBP in liposomes, as well as the kinetics of a photochemical reaction sensitized by them, was made by employing the fluorescent membrane probe 9,10-dimethylanthracene (DMA). We followed the photosensitization of DMA in real time by monitoring its fluorescence decrease at 457 nm and found that DMA's photosensitization is oxygen mediated. The kinetic traces of the photosensitization reactions were fitted to an analytical function, and the ΦΔ values were evaluated. At 10 μ M sensitizer in an aqueous suspension of 2 mg/mL egg phosphatidylcholine (EPC), HpD was found to have the largest value of ΦΔ (0.215), followed by PF-II (0.191), ZnTBP (0.023), MgTBP (0.019) and ZnPC(OH)4 (0.005). As a test of the method, ΦΔ for methylene blue in ethanol was measured and found to be 0.45 as compared to 0.52 reported in the literature. Due to difference in the sensitizers' absorbances at the laser's wavelength, the reaction photosensitized by ZnTBP was the fastest with a time constant of 6.7 min, followed by MgTBP (8.7), PF-II (11.9), HpD (17.1) and ZnPC(OH)4 (31.2), all at equal sensitizers' concentrations and laser intensities. The binding constants of the sensitizers to EPC liposomes are also reported.  相似文献   

3.
Abstract Laser flash photolysis has previously been used to study the nature of DHE via measurements of photophysical parameters which are dependent on the molecular weight of the system being studied. These results to date allow only a lower limit to be established for DHE which imply that in some environments such as detergents more than two porphyrin units are linked. We have now determined the triplet extinction coefficient of DHE by the pulse radiolysis technique via an energy transfer method which allows the triplet extinction of DHE to be estimated independent of the molecular weight. The combined techniques allow the actual molecular weight of DHE to be established at about 4200. Laser flash techniques have also now been used to determine, for a number of potential photodynamic sensitisers, the quantum yield of triplet state formation (θT) and, using the direct luminescence of singlet oxygen at 1270 nm, the quantum yield of singlet oxygen formation (θδ). For many of the porphyrins studied θδ is less than θT. For DHE itself there is a substantial increase in θδ in detergent compared to buffer. The θδ yields for a number of related systems including 'simple'systems such as haematoporphyrin, for linked porphyrin-chlorin systems, (including DHE in which the end porphyrin is reduced to a chlorin–DHEC), and for phthalocyanines are compared. For the DHEC the θδ is close to that of DHE itself which may imply that such chlorins could be of use in photodynamic therapy (PDT).  相似文献   

4.
Abstract— The physical quenching of singlet molecular oxygen (1Δg) by amino acids and proteins in D2O solution has been measured by their inhibition of the rate of singlet oxygen oxidation of the bilirubin anion. Steady-state singlet oxygen concentrations are produced by irradiating the oxygenated solution with the 1–06 μm output of a Nd-YAG laser, which absorbs directly in the electronic transition 1Δg+ 1 v →3Σg-. The rate of quenching by most of the proteins studied is approximated by the sum of the quenching rates of their amino acids histidine, tryptophan and methionine, which implies that these amino acids in the protein structure are all about equally accessible to the singlet oxygen. The quenching constants differ from those obtained by the ruby-laser methylene-blue-photosensitized method of generating singlet oxygen, or from the results of steady-state methylene-blue-photosensitized oxidation, where singlet oxygen is assumed to be the main reactive species. The singlet oxygen quenching rates in D2O, pD 8, are (107ℒ mol-1 s-1): alanine 0–2, methionine 3, tryptophan 9, histidine 17, carbonic anhydrase 85, lysozyme 150, superoxide dismutase 260, aposuperoxide dismutase 250.  相似文献   

5.
Abstract. Metallotexaphyrins have clinical applications as photo-sensitizers of photodynamic therapy (PDT). The singlet oxygen quantum yield (φ>Δ) was determined for a series of metallotexaphyrin derivatives (Lu [III], Y [III], Cd [II], In [III] and Gd [in]) under conditions where the agents are believed to exist in monomeric form. The results show φΔ of metallotexaphyrins vary with the medium and the metal cation. Measurements on the Lu (III) texaphyrin led to φΔ= 0.38 in unbuffered 5% Tween 20 and φΔ= 0.58 in pH 7.4 phosphate buffer plus 1% Triton X-100 (±10%). The in vitro photodynamic efficiency calculated from φΔ is compared to in vivo PDT efficacy in an animal tumor model.  相似文献   

6.
The steady-state UVA (350 nm) photolysis of ( E )-β-ionone ( 1 ) in aerated toluene solutions was studied by 1H NMR spectroscopy. The formation of the 1,2,4-trioxane ( 2 ) and 5,8-endoperoxide ( 5 ) derivatives in the ratio of 4:1 was observed. Time-resolved laser induced experiments at 355 nm, such as laser-flash photolysis, photoacoustic and singlet oxygen 1O2 phosphorescence detection, confirmed the formation of the excited triplet state of 1 with a quantum yield Φ T = 0.50 as the precursor for the generation of singlet oxygen 1O2 ( Φ Δ = 0.16) and the isomeric α-pyran derivative ( 3 ), which was a reaction intermediate detected by NMR. In turn, the reaction of 1O2 with 1 and 3 occurred with rate constants of 1.0 × 106 and 2.5 × 108  m −1s−1 to yield the oxygenated products 5 and 2 , respectively, indicating the relevance of the fixed s-cis configuration in the α-pyran ring in the concerted [2+4] cycloaddition of 1O2.  相似文献   

7.
Abstract Merocyanine derivatives were prepared by structural alterations at the barbituric acid or chalcogenazole moieties. The photophysical properties of the dyes were markedly influenced by the presence of selenium rather than sulfur as a substituent at position 2 of the barbiturate. In methanol, quantum yields of both triplet state (φτ) and singlet oxygen sensitization (φΔ) were increased by over an order of magnitude, with a concomitant decrease in fluorescence, when selenium was present in the molecule. Photoisomerization, one of the dominant deactivation pathways in the sulfur- or oxygen-containing analogues, was completely absent in the selenium-containing derivatives. Efficient triplet state formation was observed for selenium-containing derivatives incorporated into L1210 cells by diffuse reflectance laser flash photolysis. Cytotoxicity studies, camed out using clonogenic assays on L1210 leukemia cells, showed a good correlation with φτ and φΔ, measured in solution. Experimental evidence provided by this paper supports a triplet state-, and probably singlet oxygen-, mediated phototoxic mechanism. Photoisomerization or singlet state mechanisms can be discounted.  相似文献   

8.
Abstract— …According to the criteria of enhancement in D2O and inhibition by sodium azide, the oxidation of tyramine photosensitized by methylene blue is largely a singlet oxygen or Type II process. Its quantum yield approximates 0.3 in D2O at pH 10. There is a less efficient reaction not quenched by azide, which is assigned to a dye-substrate or Type I process. It gives rise to products with distinct bands at 320 and 285nm. Products of the Type I reaction are further oxidized by singlet oxygen and thereby compete with tyramine for this reagent. Kinetic parameters were estimated by computer simulation of the dependence of quantum yield on extent of reaction. The rate constant for reaction of O2 (1Δg) with tyramine was estimated to be 2.8 × 108 M -1 s -1± 20% at pH 10. The reaction was also sensitized by hypericin in what appears to be a Type II process.  相似文献   

9.
-The luminescence at 1.27 μm from the 3→→1δg transition of the oxygen molecule has been detected from a variety of liquid systems. A Q-switched laser delivering pulses of 532 nm light was the excitation source, a germanium photodiode was the detector and substituted porphyrins were used as photosensitizers. Protio- and deutero- forms of several solvents were studied and the singlet oxygen lifetimes determined directly agreed well with published values. Tδ in D2O was found to be 55 μs and, by extrapolation from a series of H2O - D2O mixtures, a value of 3.3 μs was obtained for Tδ in H2O. The technique was shown to be useful in measuring Tδ values in several microheterogeneous systems such as surfactant micelles, vesicles and human serum albumin.  相似文献   

10.
Abstract— The photooxidation of epinephrine, sensitized by methylene blue or by chlorophylls, excited with red light, involves the reduction of two molecules of oxygen to hydrogen peroxide per molecule of epinephrine oxidized to adrenochrome. The initial rates of these reactions are not affected by low concentrations of catalase. In 99 mol % D2O, rates of methylene blue sensitized photooxidations are accelerated as much as 5.2 times over rates in ordinary water. Azide anion is a more effective inhibitor of this reaction in D2O than in H2O. Half maximal inhibitions are obtained by 1.3 mM azide in H2O and by 0.1 mAf azide in D2O. Isotope effects and azide sensitivities point to photooxidation of epinephrine in D2O primarily by a singlet oxygen pathway; in H2O, non-singlet oxygen pathways become more predominant. Superoxide dismutase (SOD) markedly inhibits rates of the photooxidations in H2O and in D2O; about 25% at 10-9 M SOD, and 50% at 10-6 M SOD in H2O. In the photooxidation in H2O, both by non-singlet and singlet oxygen mechanisms, the amount of superoxide produced is equivalent to the amount of O2 consumed in the photooxidation of epinephrine; the superoxide thus formed participates in the oxidation of epinephrine.  相似文献   

11.
Abstract— The kinetic properties of O2(1Δg) have been examined in unilamellar vesicle dispersions composed of didodecyldimethylammonium bromide, di- n -octadecyl phosphate and egg lecithin. Light absorbing sensitizers 2-acetonaphthone, methylene blue and a methylene blue derivative of enhanced water-solubility were used. The rate parameters for singlet oxygen were monitored by observing the time profile of the bleaching of the reactive substrates diphenylisobenzofuran and anthracene dipropionate. The natural lifetime of O2(1Δg) in D2O-based suspensions was shown to be 46/JS in good agreement with that found earlier for D2O alone and D2O-based micelle systems. The bimolecular rate constants for reaction with diphenylisobenzofuran and dimethylindole (both lipid-bound) and histidine (water-bound) were also in close conformity with the values found earlier in micellar media. Kinetic spectrophotometry has been shown to be a useful technique for examining rate parameters in these heterogeneous media.  相似文献   

12.
The photobinding of radiolabeled psoralen and 8-methoxypsoralen (8-MOP) to biological macromolecules under conditions that affect the lifetime of singlet oxygen (1O2) is reported. These conditions are: increase of 1O2 lifetime in D2O and 1O2 quenching with DABCO. The photobinding to calf thymus DNA was studied in vitro and the covalent photobinding to DNA and other biological macromolecules (RNA, proteins) was also studied in intact bacteria. The results of the DNA photobinding experiments have been related to the induction of genetic damage in a bacterial test system. In addition, laser flash photolysis has been used to measure the effect of D2O and DABCO on the psoralen and 8-MOP triplet lifetimes. In general D2O increases the triplet lifetimes and DABCO quenches the triplet states with the probable formation of radicals. The results suggest that the covalent photobinding of 8-MOP to various biological macromolecules in situ is a basis for cell damage occurring at various cellular targets. Analysis of the results of the mutagenicity test suggests that in the presence of D2O the mechanism of induction of genetic lesions is not changed and therefore largely seems to be independent of singlet oxygen.  相似文献   

13.
Abstract— Photophysical properties of two chlorin type molecules (CHLI) and (CHLII) were investigated in different solvents. Quantum yields of fluorescence φF of S, → T, intersystem crossing φT, and of singlet oxygen (1Δg) formation φΔ, as well as the Stern-Volmer constants for the quenching of the S, states by oxygen and the bimolecular rate constants of quenching of 1Δg by the chlorins were measured. The values of φT and φΛ can be given as 0.57 and 0.58 for CHLI and 0.69 and 0.58 for CHLII. The values of the fluorescence quantum yields, the strong absorption of the chlorins in the red (Λ > 630 nm) and the high values of the quantum yields for 1Δg formation recommend the chlorin derivatives as potential markers and photosensitizers for tumor therapy.  相似文献   

14.
Abstract Photosensitization of lysozyme, liposomes, ghosts and intact red blood cells (RBC) was investigated for aqueous hypericin. The effects of azide ion, 1,4-diazabicyclo(2.2.2)octane, and superoxide dismutase on photosensitized inactivation of lysozyme in 0.5% Triton X-100 indicate that singlet oxygen is the major inactivating intermediate with a contribution from superoxide. The singlet oxygen quantum yield (ΦΔ) scaled to methylene blue is 0.49 ± 0.06 at monochromatic wavelengths from 514 to 600 nm. Relative values of ΦΔ based on lysozyme inactivation for different vehicles are: 0.5% Triton X-100 (1.13), human serum albumin (0.65), Cremophor-EL(0.76), Cremophor-RH40 (0.98), egg phosphatidylcholine (EPC) liposomes (0.04), hydrogenated soy phosphatidylcholine (HSPC) liposomes (<0.01). Hypericin photosensitized lipid peroxidation of EPC liposomes and RBC ghosts. Extensive cross-linking of ghost membrane proteins occurred during the initial stages of lipid peroxidation. Prompt photohemolysis was used as the assay of RBC membrane damage. The photohemolysis curves are modeled with multihit target theory based on the "hit number" (n) and the target cross section (v). The values of v and the conventional "1/t50" parameter are equivalent determinants of the photohemolysis rate. The photohemolysis curves are in good agreement with n = 15 for incubation in phosphate-buffered saline at different hypericin concentrations and with additives. The measurements for other vehicles led to n = 19 for Cremophor-EL and n = 3 for EPC and HSPC liposomes, indicating that the kinetics of photohemolysis depend on the conditions of incubation.  相似文献   

15.
Abstract— Several porphyrin esters used as models for polystyrene-bound porphyrins have been prepared and their excited states have been studied by laser flash photolysis, IR phosphorescence of singlet molecular oxygen, O2(1Δg), and steady-state fluorescence. The photophysical properties of the porphyrin esters in solution are affected by the presence of nitro group(s) in the chain. In this case, an important decrease in φf, φT and φδ (to ca 0.7–0.4 of the value for the parent dimethyl ester) is observed. This is mainly due to intramolecular electron-transfer quenching [by the nitro group(s)] of the first excited singlet state of the porphyrin. The thermodynamic feasibility of this deactivation pathway has been confirmed polarographically. Quenching of the porphyrin triplet state and of O2(1Δg) by the nitro groups is negligible. The present conclusions explain also the results obtained previously for the photooxidation of bilirubin sensitized by the parent insoluble polystyrene-bound porphyrins. In that case the photooxidation rates were correlated directly with the quantum yield of O2(1Δg) production by the sensitizer. The consequences of these results for the use of polystyrene-bound porphyrins in sensitized photooxidation processes are discussed.  相似文献   

16.
Abstract— The fluoroquinolone antibiotics can induce skin photosensitivity in some patients and this has been ascribed to the generation of reactive oxygen species, such as singlet oxygen (O2[1Δg]). We have studied the photochemical properties of the different ionized forms of the fluoroquinolone norfloxacin upon complexation with Mg2+ and Ca2+ ions, as it is proposed that the antibiotic exists mainly as a complex in the blood plasma. We found that the norfloxacin cation (pH < 6) shows no photodegradation after UVA irradiation and has a low quantum yield of O2(1Δg) generation. The norfloxacin cation does not complex. Ca2+ or Mg2+ ions; when these ions are added to the solution, we observed no changes in the fluorescence quantum yields (φflu) and singlet oxygen yields (φΔ). In contrast, the neutral (6 ± pH > 8.5) and anionic (pH > 9) forms of norfloxacin are able to complex calcium and magnesium, and their generation of O2 (1Δg) is decreased by complexation. The neutral zwitterionic form and the anionic form also quench singlet oxygen by both chemical and physical pathways regardless of complex formation, while physical quenching is observed for the cation. At pH > 7.4, norfloxacin photobleaches and complexation to Ca2+ and Mg2+ increases the rate at which photobleaching occurs. Thus, both the pH of the medium and complexation with metal cations may affect the phototoxic potential of this antibiotic.  相似文献   

17.
It has been previously shown that a metabolite of piroxicam but not piroxicam itself causes phototoxicity to cells in vitro after exposure to UVA (320–400 nm) radiation. The phototoxicity mechanism for this metabolite, 2-methyl-4-oxo-2H-l,2-benzothiazine-l,l-dioxide (Compound I), was investigated. In vitro phototoxicity to human mononuclear cells was assayed using 0.5 m M Compound I and UVA radiation. The UVA fluence required for phototoxicity of Compound I was lower by a factor of 2-3 in D2O buffer compared to H2O buffer. Superoxide dismutase and mannitol, which remove O2- and OH", respectively, do not decrease the phototoxicity. The photodecomposition of Compound I was inhibited by sodium azide, enhanced by human serum albumin and unaffected by mannitol. Stable photoproducts of Compound I were not toxic to the cells. The quantum yield of singlet oxygen based on its emission at 1270 nm was 0.19 and 0.35 for Compound I and s2 ± 10-3 and 10-2 for piroxicam in D2O and C6H6, respectively. While the extremely low quantum yield for singlet oxygen from piroxicam appears to account for its lack of phototoxicity, the phototoxicity mechanism for its metabolite, Compound I, most likely does involve singlet oxygen.  相似文献   

18.
Abstract— The chemical reaction rate constant of bilirubin with singlet oxygen in basic aqueous solution has been redetermined to be 3.5 × 108 M-1 s-1 by a competitive technique using a 1,3-diphenylisobenzofuran in sodium dodecyl sulfate micelles. Bilirubin also physically quenches a singlet oxygen with a rate constant of 9 × 108 M -1 s-1. The lifetime of singlet oxygen in D2O solution has been determined to be 35 μ s . The absorption cross-section for the molecular oxygen 3g-→1δ g + 1 v electronic transition at 1.06μn in aqueous solution is unexpectedly larger than the gas paase cross-section.  相似文献   

19.
Abstract Cationic porphyrins, known to have a high affinity for DNA, are useful tools with which to probe a variety of interactions with DNA. In this study we have examined both DNA strand scission and oxidative DNA base damage, measured by 8-hydroxy-2'-deoxyguanosine (8-OHdG) formation, using a photoactivated cis-dicationic por-phyrin. The data demonstrated a dose-dependent formation for each type of DNA damage. Inhibition of strand scission and 8-OHdG formation with the singlet oxygen scavenger 1,3-diphenylisobenzofuran and with MgCl2 and no apparent effect by D2O suggests that a singlet oxygen mechanism generated in close proximity to the DNA may be responsible for the damage. However, a nearly complete inhibition of 8-hydroxy-2'-deoxyguanosine formation in 75% D2O and the substantial enhancement of 8-hydroxy-2'-deoxyguanosine formation in a helium atmosphere by photoactivated porphyrin rules out singlet oxygen as a primary mechanism for this process. These data indicate that distinct mechanisms lead to 8-OHdG formation and strand scission activity.  相似文献   

20.
PHOTOSENSITIZED FORMATION OF ASCORBATE RADICALS BY RIBOFLAVIN: AN ESR STUDY   总被引:1,自引:0,他引:1  
Abstract— The riboflavin-sensitized photooxidation of ascorbate ion (HA-) to ascorbate radical (A-) was followed by electron spin resonance (ESR) spectroscopy in conjunction with oxygen depletion measurements. In air-saturated aqueous media, steady-state amounts of A- are rapidly established upon irradiation. The ESR signal disappears within a few seconds after the light is extinguished–more slowly under constant irradiation as oxygen is depleted. No photooxidation was observed in deaerated media. Similar results were obtained with other flavins and when ascorbyl palmitate was substituted for HA-. The effect of added superoxide dismutase, catalase, desferrioxamine, and singlet oxygen scavengers (NaN3 and tryptophan) was studied, as was replacement of water by D2O and saturation with O2. The results are indicative of ascorbate free radical production via direct reaction between ascorbate ion and triplet riboflavin in the presence of O2. While the presence of superoxide ion tends to reduce the steady-state concentration of A-, competition from the reaction of HA- with singlet oxygen is less apparent in this system (at HA-≥ 1 m M ) than in the previously studied aluminum phthalocyanine tetrasulfonate-photosensitized reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号