首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 225 毫秒
1.
In our previous work we have found that the 2223 phase is formed more rapidly and the structural stability can be enhanced by doping high valence cation(Sn~(4+)、Sb~(5+)、V~(5+)、W~(6+)、Mo~(6+) etc.) in the Bi(Pb)SrCaCuO system. In this paper the effects of high valence cations doped on the phase formation and the crystal structure are discussed further.The Aurivillus building and rocksalt building unit coexist in the Bi double layers. The structural variety strongly affects the structural stability. Owing to Pb~(2+) addition the probability of Aurivillus building is increased, the stability of 2223 phase can be promoted. However, the structure is still not stable, since the addition of Pb~(2+) has decreased the valence state of Bi site and the oxygen positions are not fully occupied. By doping high valence cation, especially, when the valence of Pb_x~(2+)M_y~(n+) equals to +3 the structure of the 2223 phase can be stabilized. This result has been observed with examining elemental content of 2223 phase.The melting point of the grain boundaries are much lower after doping high valence cations, therefore the ion diffusion is more rapid and acceleration of the 2223 phase formation is observed.  相似文献   

2.
The related parameters of cation size and valence that control the crystallization of Sr(3)CaRu(2)O(9) into a 1:2 B-site-ordered perovskite structure were explored by cationic substitution at the strontium and calcium sites and by the application of high pressure. At ambient pressures, Sr(3)MRu(2)O(9) stoichiometries yield multiphasic mixtures for M = Ni(2+), Mg(2+), and Y(3+), whereas pseudocubic perovskites result for M = Cu(2+) and Zn(2+). For A-site substitutions, an ordered perovskite structure results for Sr(3-x)Ca(x)CaRu(2)O(9), with 0 相似文献   

3.
Ciszewski A 《Talanta》1985,32(11):1051-1054
The determination of trace levels of thallium in bismuth and bismuth salts by differential pulse anodic-stripping voltammetry has been made possible by using a surfactant as an electrochemical masking agent, in addition to a complexing agent. In 0.2M EDTA at pH 4.5 as supporting electrolyte in the absence of surfactant, bismuth at concentrations below 10(-4)M does not interfere. When the electrolyte also contains tetrabutylammonium ions at 0.01 M concentration, bismuth can be tolerated at concentrations up 0.05M, and the height of the thallium peak is unaffected. It is thus possible to determine 1 nM Tl(I) in the presence of 0.05M Bi(III), i.e., Tl at the 1 x 10(-6)% level in bismuth. The precision of the determination and the recovery are satisfactory. Neither an 800-fold ratio of Cu(II) nor a 10(7)-fold ratio of Pb(II) to Tl(I) interferes in the determination. Other cations such as Zn(2+), Cd(2+), In(3+), Hg(2+), Fe(3+), Sb(3+) and Sn(4+) in 10(4)-fold molar ratio to Tl(I) have no effect on the determination. Thallium has been determined in bismuth metal and in bismuth nitrate of various degrees of purity.  相似文献   

4.
We report a molecular dynamics study of cobalt bis(dicarbollide) anions [(B(9)C(2)H(8)X(3))(2)Co](-) (XCD(-)) commonly used in liquid-liquid extraction (X = H, Me, Cl, or Br), showing that these anions, although lacking the amphiphilic topology, behave as anionic surfactants. In pure water, they display "hydrophobic attractions", leading to the formation of aggregates of different sizes and shapes depending on the counterions. When simulated at a water/"oil" interface, the different anions (HCD(-), MeCD(-), CCD(-), and BrCD(-)) are found to be surface active. As a result, the simulated M(n+) counterions (M(n+) = Na(+), K(+), Cs(+), H(3)O(+), UO(2)(2+), Eu(3+)) concentrate on the aqueous side of the interface, forming a "double layer" whose characteristics are modulated by the hydrophobic character of the anion and by M(n+). The highly hydrophilic Eu(3+) or UO(2)(2+) cations that are generally "repelled" by aqueous interfaces are attracted by dicarbollides near the interface, which is crucial as far as the mechanism of assisted cation extraction to the oil phase is concerned. These cations interact with interfacial XCD(-) in their fully hydrated Eu(H(2)O)(9)(3+) and UO(2)(H(2)O)(5)(2+) forms, whereas the less hydrophilic monocharged cations display intimate contacts via their X substituents. The results obtained with the TIP3P and OPLS models for the solvents are confirmed with other water models (TIP5P or a polarizable 4P-Pol water) and with more polar "oil" models. The importance of interfacial phenomena is further demonstrated by simulations with a high oil-water ratio, leading to the formation of a micelle covered with CCD's. We suggest that the interfacial activity of dicarbollides and related hydrophobic anions is an important feature of synergism in liquid-liquid extraction of hard cations (e.g., for nuclear waste partitioning).  相似文献   

5.
The geometries and energetics of complexes of Li(+), Na(+), K(+), Be(2+), Mg(2+), and Ca(2+)metal cations with different possible uric acid anions (urate) were studied. The complexes were optimized at the B3LYP level and the 6-311++G(d,p) basis set. Complexes of urate with Mg(2+), and Ca(2+)metal cations were also optimized at the MP2/6-31+G(d) level. Single point energy calculations were performed at the MP2/6-311++G(d,p) level. The interactions of the metal cations at different nucleophilic sites of various possible urate were considered. It was revealed that metal cations would interact with urate in a bi-coordinate manner. In the gas phase, the most preferred position for the interaction of Li(+), Na(+), and K(+) cations is between the N(3) and O(2) sites, while all divalent cations Be(2+), Mg(2+), and Ca(2+) prefer binding between the N(7) and O(6) sites of the corresponding urate. The influence of aqueous solvent on the relative stability of different complexes has been examined using the Tomasi's polarized continuum model. The basis set superposition error (BSSE) corrected interaction energy was also computed for complexes. The AIM theory has been applied to analyze the properties of the bond critical points (electron densities and their Laplacians) involved in the coordination between urate and the metal cations. It was revealed that aqueous solvation would have significant effect on the relative stability of complexes obtained by the interaction of urate with Mg(2+) and Ca(2+)cations. Consequently, several complexes were found to exist in the water solution. The effect of metal cations on different NH and CO stretching vibrational modes of uric acid has also been discussed.  相似文献   

6.
Three new bismuth oxyhalides BaPbBi3Nb2O11X (X = Cl, Br, I), including the first perovskite bismuth oxyiodide, were prepared by ceramic route. Their crystal structure is formed by intergrowth of Sillén (PbBiO2X) and Aurivillius (BaBi2Nb2O9) phases. The results of Rietveld refinements show that the peculiarities of the building blocks (in particular, the distribution of Ba2+ and Bi3+) remain intact upon formation of the intergrowth structure. The Ba2+ cations prefer pure-oxygen to mixed oxygen-halogen environment which can be explained on the basis of bond valence method.  相似文献   

7.
Many important classes of biomolecules require divalent cations for optimal activity, making these ions essential for biologically relevant structural studies. Bicelle mixtures composed of short-chain and long-chain lipids are often used in solution- and solid-state NMR structure determination; however, the phase diagrams of these useful orienting media and membrane mimetics are sensitive to other solution components. Therefore, we have investigated the effect of varying concentrations of four divalent cations, Ca(2+), Mg(2+), Zn(2+), and Cd(2+), on cholesterol sulfate-stabilized DMPC/DHPC bicelles. We found that low concentrations of all the divalent ions are tolerated with minimal perturbation. At higher concentrations Zn(2+) and Cd(2+) disrupt the magnetically aligned phase while Ca(2+) and Mg(2+) produce more strongly oriented phases. This result indicates that divalent cations are not only required to maintain the biological activity of proteins and nucleic acids; they may also be used to manipulate the behavior of the magnetically aligned phase.  相似文献   

8.
The synthesis and properties of 3 new ligand-bridged bimetallic complexes, 1(2+), 2(2+), and 3(2+), containing [RuCl([9]aneS(3))](+) metal centers are reported. Each complex was bridged by a different ditopic ligand. 1(2+) is bridged by 3,6-bis(2-pyridyl)-1,2,4,5-tetrazine (bptz), while 2(2+) and 3(2+) are bridged by 2,3-bis(2-pyridyl)pyrazine (dpp) and 2,2'-bipyrimidine (bpym), respectively. The Ru([II]) isovalent states of these complexes have been investigated using a variety of techniques. In the case of 3(2+), X-ray crystallography studies show preferential crystallization of an anti form with respect to coordinated chloride ligands (crystal data for [3][Cl(2)].4H(2)O: C(20)H(38)Cl(4)N(4)O(4)Ru(2)S(6), monoclinic, space group P2(1)/a, a = 10.929(14), b = 13.514(17), c = 11.299(16) A, beta = 90.52(1), V = 1669 A(3), Z = 2). UV/vis spectroscopy shows that spectra of these complexes are dominated by intraligand (pi-->pi) and metal-to-ligand Ru(d)-->L(pi) charge transfer transitions. Electrochemical studies reveal that metal-metal interactions are sufficiently intense to generate the Ru(III)/Ru(II) mixed valence [[RuCl([9]aneS(3))(2)](L-L)](3+) state, where L-L = individual bridging ligands. Although the 1(3+), 2(3+), and 3(3+) mixed valence states were EPR silent at room temperature and 77 K, isotropic solution spectra were observed for the electrochemically generated radical cations 1(+), 2(+), and 3(+), with 1(+) displaying well-resolved hyperfine coupling to bridging ligand nitrogens. Using UV/vis/NIR spectroelectrochemistry, we investigated optical properties of the mixed valence complexes. All three showed intervalence charge transfer (IVCT) bands that are much more intense than electrochemical data indicate. Indeed, a comparison of IVCT data for 1(3+) with an analogous structure containing [(NH3)(3)Ru](2+) metal centers shows that the IVCT in the new complex is an order of magnitude more intense. It is concluded that although the new complexes show relatively weak electrostatic interactions, they possess large resonance energies.  相似文献   

9.
The response of a monoaza-15-crown-5 with an optically active aminobenzoxazinone moiety to divalent cations was investigated. The crown ether was found to undergo a strong emission shift to the blue when complexed with specific divalent metals that have ionic diameters between 1.9-2.4 A. Consequently the photoactive macrocycle is responsive to Mg(2+), Ca(2+), Ba(2+), Sr(2+), Cd(2+), and particularly responsive to Hg(2+)and Pb(2+). Macrocycle emission spectra are shown to be a function of cation concentration. Alkaline metal cations and smaller transition metals ions such as Ni(2+), Co(2+)and Zn(2+)do not cause significant changes in the macrocycle emission spectra. Emission, absorption, and complex stability constants are determined. Mechanisms of cation selectivity and spectral emission shifts are discussed. Challenges involving immobilization of the macrocycle while preserving its spectral response to cations are explored.  相似文献   

10.
The effect of a bridgehead methyl group on the hydride ion affinity in the gas phase of bicyclo[1.1.1]pent-1-yl (1+), 1-norbornyl (3+), cubyl (5+), 1-adamantyl (7+), bicyclo[2.2.2]oct-1-yl (9+),and bicyclo[3.1.1]hept-1-yl (11+) cations has been studied using density functional theory and ab initio methods. It is concluded that the methyl group always increases the stability of the substituted cations. The effect of the solvent on the stability of methyl-substituted cations in relation to the unsubstituted cations has been studied using the polarizable continuum model of the self-consistent reaction field theory. In the case of rearranging cations, the nucleophilic assistance of the solvent is determined by means of the interaction energy of the corresponding water complexes. It is concluded that the solvent causes the relative stabilization of the parent cations. As a consequence, most of the methyl-substituted bridgehead derivatives show a lower solvolysis rate than the corresponding unsubstituted compounds. A nonqualitative explanation of the methyl effect on the relative stability of bridgehead cations in both gas phase and solution is given for the first time. The ratios of solvolysis products in the case of rearranging bridgehead cations have also been computed from the relative stability of the intermediate water complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号