首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Although obesity is a major background of life style-related diseases such as diabetes mellitus, lipid disorder, hypertension and cardiovascular disease, the extent of whole body fat accumulation does not necessarily the determinant for the occurrence of these diseases. We developed the method for body fat analysis using CT scan and established the concept of visceral fat obesity, in other word metabolic syndrome in which intra-abdominal visceral fat accumulation has an important role in the development of diabetes, lipid disorder, hypertension and atherosclerosis. In order to clarify the mechanism that visceral fat accumulation causes metabolic and cardiovascular diseases, we have analyzed gene expression profile in subcutaneous adipose tissue and visceral adipose tissue. From the analysis, we found that adipose tissue, especially visceral adipose tissue expressed abundantly the genes encoding bioactive substances such as cytokines, growth factors and complements. In addition to known bioactive substances, we found a novel collagen-like protein which we named adiponectin. Adiponectin is present in plasma at a very high concentration and is inversely associated with visceral fat accumulation. Adiponectin has anti-diabetic, anti-hypertensive and anti-atherogenic properties and recent studies revealed that this protein has an anti-inflammatory and anti-oncogenic function. Therefore hypoadiponectinemia induced by visceral fat accumulation should become a strong risk factor for metabolic and cardiovascular diseases and also some kinds of cancers.In this review article, I would like to discuss the mechanism of life style-related diseases by focusing on the dysregulation of adiponectin related to obesity, especially visceral obesity.  相似文献   

2.
Actual CTAB and SB3-12 surfactant force field models fail to reproduce one of the most important thermodynamic property of those molecules, the surface tension. Molecular dynamics simulations were conducted to construct new force fields of the cationic surfactant, Cetyl Trimethyl Ammonium Bromide (CTAB), and the non-ionic, cocoamidopropyl betaine, surfactants using united atom models. By scaling the Lennard Jones parameters, the well depth potential (ε) and the intermolecular distance (σ), we constructed an united atom model of the cationic and the betaine surfactants. The new models were tested with actual experiments reported in the literature. With the correct parameters, surface tensions of both surfactants were calculated at different temperatures and different areas per molecule. Electrostatic properties and micelle structures were also calculated with the new set of parameters and radius of gyrations, i.e. micelle radius, were evaluated showing good affinity with experimental data. The new force fields were proved with two different water models, TIP4P/ε and SPC/E, having good agreement with actual experiments  相似文献   

3.
Mixed crystals Rb3(HSO4)2.5(H2AsO4)0.5 have been prepared by slow evaporation from aqueous solution at room temperature. The crystals were characterized by X-ray single analysis, which revealed that Rb3(HSO4)2.5(H2AsO4)0.5 crystallizes in the space group P with lattice parameters: a = 7.471(3) Å; b = 7.636(1) Å; c = 12.193(2) Å; α = 71.91(1)°; β = 73.04(6)° and γ = 88.77(2)°. In this structure, the ordered S(1)O4 and the disordered S(3)/AsO4 tetrahedra are connected by O–H..O hydrogen bonds, to a zigzag chains running in the b-direction. These chains are, in turn, bonded to one another by disordered hydrogen bridges O–H..H–O, to give a planar structure, with hydrogen-bonded sheets, laying parallel to (1 0 0). Each disordered tetrahedron is linked to a tetrahedron neighbouring S(2)O4 by ordered hydrogen bonds. Broader peaks in IR spectrum of the title material support the assumption of disordered structure. Thermal analysis of the superprotonic transition in Rb3(HSO4)2.5(H2AsO4)0.5 showed that the transformation to the high-temperature phase occurs by one-step process at 404 K. Thermal decomposition of this compound takes place at much higher temperatures, with an onset of approximately 473 K.  相似文献   

4.
A new nanostructured Bi(III) supramolecular compound, {[Bi2(4,4′-Hbipy)1.678(4,4′-Hbipy)0.322(μ-I)2I5.678] (4,4′-bipy)} (1), 4,4′-bipy = 4,4′-bipyridine} was synthesized by a sonochemical method. The nano-structure of 1 was investigated using scanning electron microscopy, powder X-ray powder diffraction (XRD), IR spectroscopy and elemental analysis, and the crystal structure of compound 1 was determined by single-crystal X-ray diffraction. The thermal stability of bulk compound 1 and of nano sized particles was studied by thermal gravimetric (TG) and differential thermal analyses (DTA). Bi2O3 and BiI3 nano-structures were obtained by calcinations of nano-structures of compound 1 at 400 °C under air and nitrogen atmospheres, respectively.  相似文献   

5.
A comparative analysis has been carried out on the Raman spectra of FeSO4·nH2O (n = 1, 4, 7) including the 2D‐analogs. The effects of changing the degrees of hydration have been found from the lattice, SO42− internal, and H2O internal modes. Increasing degrees of hydration shift the intense ν1(SO4) peak to lower wavenumbers and reduce the amount of splitting on the ν3(SO4) peaks. Some of the water librational bands cause the broadening of the ν4(SO4) peaks in FeSO4·7H2O and the ν2(SO4) peaks in FeSO4·7D2O. The ν2(H2O) band in FeSO4·H2O is red‐shifted in excess of 100 cm−1 relative to the unperturbed H2O band. Between 240 and 190 K and between 140 and 90 K in the spectra of FeSO4.4H2O, two potential phase transitions have been identified from the changes in the lattice and water‐stretching regions. The resolution of the ν1(H2O) and ν3(H2O) bands in FeSO4·4H2O and FeSO4·H2O also improved sharply at low temperatures. The capability of distinguishing various forms of FeSO4 hydrates unambiguously makes the Raman technique a potential analytical tool for the identification of sulfate minerals on planetary surfaces. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
An extended Hückel (EH) study is performed on the clusters representing a formate adsorbed on Ru(001) and on in order to investigate the effect of potassium on the selectivity of decomposition of formate on Ru(001). The adsorption geometry and the VSIP (valence state ionization potential) values of EH parameters are determined from ab initio calculations on small clusters. The EH calculation reproduces well the site preference of formate on each surface suggested from experiments. The C---H bond of formate, which is our focus in this study, is calculated to be almost the same on the two surfaces when the molecular plane of formate is perpendicular to the surface; but when the plane is tilted from the surface normal and thus the C---H bond approaches the surface, the C---H bond is weakened to a much higher extent on clean Ru(001) than on K-covered Ru(001). This is in good agreement with the experimental result that the presence of potassium changes the reaction pathway of the decomposition of formate on Ru(001) by suppressing C---H bond cleavage.  相似文献   

7.
P. A. Gravil  H. Toulhoat   《Surface science》1999,430(1-3):176-191
First principles calculations for the coadsorption of hydrogen with sulphur and chlorine on Pd(111) are presented. Individually, both sulphur and chlorine poison hydrogen adsorption, sulphur being the more efficient poison. The observed sulphur poisoning is a structural effect. The adsorption energy decreases and the diffusion barrier increases for hydrogen atoms in the vicinity of sulphur adatoms. A sulphur coverage of 0.33 ML is sufficient to completely poison hydrogen adsorption on Pd(111). The presence of chlorine adatoms on the sulphur-poisoned surface is found to stabilise localised hydrogen adsorption. The possible promotional effects of chlorine on sulphur-poisoned catalysts are discussed.  相似文献   

8.
Soft N-donor ligand have shown to separate An(III) from Ln(III). The origin of the selectivity has not been entirely identified, and similar ligands show very different separation qualities. In this study we present a theoretical investigation of several relevant N-donor ligands in terms of atomic charges and polarisabilities obtained from an atoms in molecules approach. These allow new insights into the bonds between the ligands’ nitrogen atoms and the metal cation and explain a major part of the selectivity towards actinide ions. We deduct the superiority of 2,6-bis(1,2,4-triazine-3-yl)pyridines in separation quality compared to similar ligands for the Cm(III)/Gd(III) separation. Furthermore, improvements of existing ligands are developed that allow not only a direct experimental confirmation but also a systematic experimental study of the interactions and their influence on the selectivity.  相似文献   

9.
Density functional theory (DFT) and time-dependent density functional theory (TDDFT) are used to analyse theoretically the optoelectronic, photophysical properties and organic light-emitting diode performance of a series of fac–mer blue-emitting Iridium (III) carbene complexes. Swain–Lupton constant is used to discuss the substituents effect. 5d-orbital splitting and d–d* transitions are calculated to assess the efficiency of the studied complexes. The reorganisation energies (λ), transfer integrals, mobilities, radiative decay rate (kr), and triplet exciton generation fraction (χT) are also calculated. Due to the higher χT of these complexes, the formation of triplet exciton will be more and it will cause a faster intersystem crossing. Two host materials are proposed and host–guest match (Dexter–Förster energy) is also discussed. We hope that this unified work will surely help to design new blue-emitting phosphorescent materials in future.  相似文献   

10.
In this paper we provide a concise review of present achievements in the study of spin-wave resonance (SWR) in ferromagnetic semiconductor (Ga,Mn)As thin films. The theoretical treatment of the experimental SWR data obtained so far concentrates specifically on the spherical surface pinning (SSP) model, in which the surface spin pinning energy is expressed by configuration angles (the out-of-plane polar angle ? and the in-plane azimuthal angle φ) defining the direction of surface magnetization in the considered thin film. The model is based on a series expansion of the surface spin pinning energy; the terms in the series represent the respective pinning contributions from the cubic anisotropy as well as uniaxial anisotropies. Comparing theory with the reported experimental studies of SWR in thin films of the ferromagnetic semiconductor (Ga,Mn)As, we find that besides the first-order cubic anisotropy, higher-order cubic anisotropies (in the second and third orders) as well as uniaxial anisotropies (perpendicular in the first and second orders, and in-plane diagonal) occur on the surface of this material. We use our results to plot a 3D hypersurface visualizing the angle dependence of the surface spin pinning energy in configurational space. An advantage of this spatial representation is that the shape of the obtained hypersurface allows us to predict new SWR effects that have not yet been observed experimentally. Prospective experimental studies for the verification of this surface pinning model would bring new insight into the surface anisotropy phenomenon in (Ga,Mn)As thin films and help complete the knowledge in this field, the shortage of which in the literature available to date is becoming bothersome.  相似文献   

11.
Adsorption of Au at 850°C on a regular stepped 4° vicinal Si(0 0 1) surface results in a dramatic change of the step morphology: the surface decomposes into areas which are perfectly flat with a (0 0 1) orientation and (1 1 9) facets. Low energy electron microscopy shows the dynamics of the faceting process in real space while X-ray photoemission electron microscopy (XPEEM) allows a spatially resolved determination of the Au coverage at different stages of the faceting process. At a critical Au coverage of ≈1/3 ML (0 0 1) terraces are formed which extend anisotropically along the step edges of the surface. The steps in between the terraces bunch and form step bands in order to conserve the macroscopic miscut of the sample. Driving force for this morphological transformation is a complex (5×3.2) reconstruction formed on the (0 0 1) terraces. XPEEM shows this phase separation also for the Au coverage: on the (0 0 1) terraces the Au coverage is up to 40% higher compared to the step bands. With further increasing Au coverage the width of the Au rich terraces increases while the step bands become steeper. In a second step Au adsorbs on the step bands transforming them into well defined and smooth (1 1 9) facets.  相似文献   

12.
Cadmium hydroxide (Cd(OH)2) microcrystals were synthesized in ethanol–water medium by using cadmium chloride as cadmium source and 1,10-phenanthroline as complexation agent under solvothermal condition. The sample was characterized by FT-IR, X-ray diffraction (XRD), scanning electron microscopy (SEM) and TEM. The as-prepared Cd(OH)2 product were transformed to hexagonal CdO nanocubes by thermal treatment in air at 500 °C. The possible growth mechanism for the formation of different morphologies at basic medium has been proposed. DPV experiments were carried out for the simultaneous determination of norfloxacin and lomefloxacin in the acetate buffer solution with pH 4.5.  相似文献   

13.
Laser flash photolysis has been used to determine the bimolecular rate constants and the spectral nature of the intermediates obtained by the reaction of sulfate radical anion (SO) with 1,3,5‐triazine (T), 2,4,6‐trimethoxy‐1,3,5‐triazine (TMT), 2,4‐dioxohexahydro‐1,3,5‐triazine (DHT), and 6‐chloro N‐ethyl N'‐(1‐methylethyl)‐1,3,5‐triazine‐2,4‐diamine (atrazine, AT). The rate constants determined were in the range 4.6 × 107–3 × 109 dm3 mol?1 s?1 at pH 6. The transient absorption spectra obtained from the reaction of SO with T, TMT, DHT and AT has an absorption maximum in the region 320–350 nm and was found to undergo second‐order decay. The intermediate species is assigned to N‐yl C(OH) radical of T (TOH?), carbon centered neutral radical of TMT, an OH‐adduct of AT and an N‐centered radical in the case of DHT. The interpretations on the experimental results obtained from TMT are supported by DFT calculation using Gaussian 03. Steady state radiolysis technique has also been used to investigate the degradation of AT induced by SO. The degradation profile indicated that about 99% of AT has been decomposed after an absorbed gamma‐radiation dose of 7.5 kGy. The degradation yield of AT (expressed as G(‐AT)) was found to be 0.26 µ mol J?1. The degradation reactions initiated by SO may thus be employed as a potential alternative for ?OH‐induced degradation of triazines. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
A new iron phosphate K4MgFe3(PO4)5 has been synthesized by the flux method and characterized by single-crystal X-ray diffraction and Mössbauer spectroscopy. It crystallizes in the tetragonal system with the space group and the unit cell parameters a=9.714(3) Å and c=9.494(5) Å. The crystal structure is of a new type. It exhibits a three-dimensional framework built up from corner-sharing MO5 (M=0.75Fe+0.25Mg) trigonal bipyramids and PO4 tetrahedra. The K+ ions are occupying large eight-sided tunnels running along c. A room temperature Mössbauer study confirmed the +3 valence state of iron and its five-coordination.  相似文献   

15.
16.
Asymmetries in the manifold of spinning sidebands (ssbs) from the satellite transitions have been observed in variable-temperature 27Al MAS NMR spectra of alum (KAl(SO4)2.12H2O), recorded in the temperature range from -76 to 92 degrees C. The asymmetries decrease with increasing temperature and reflect the fact that the ssbs exhibit systematically different linewidths for different spectral regions of the manifold. From spin-echo 27Al NMR experiments on a single-crystal of alum, it is demonstrated that these variations in linewidth originate from differences in transverse (T2) relaxation times for the two inner (m=1/2<-->m=3/2 and m=-1/2<-->m=-3/2) and correspondingly for the two outer (m=3/2<-->m=5/2 and m=-3/2<-->m=-5/2) satellite transitions. T2 relaxation times in the range 0.5-3.5 ms are observed for the individual satellite transitions at -50 degrees C and 7.05 T, whereas the corresponding T1 relaxation times, determined from similar saturation-recovery 27Al NMR experiments, are almost constant (T1=0.07-0.10 s) for the individual satellite transitions. The variation in T2 values for the individual 27Al satellite transitions for alum is justified by a simple theoretical approach which considers the cross-correlation of the local fluctuating fields from the quadrupolar coupling and the heteronuclear (27Al-1H) dipolar interaction on the T2 relaxation times for the individual transitions. This approach and the observed differences in T2 values indicate that a single random motional process modulates both the quadrupolar and heteronuclear dipolar interactions for 27Al in alum at low temperatures.  相似文献   

17.
陈杭  雷雪玲  刘立仁  刘志锋  祝恒江 《中国物理 B》2010,19(12):123601-123601
The lowest-energy structures and the electronic properties of Mo2nNn(n=1-5) clusters have been studied by using the density functional theory(DFT) simulating package DMol 3 in the generalized gradient approximation(GGA).The resulting equilibrium geometries show that the lowest-energy structures are dominated by central cores which correspond to the ground states of Mo n(n = 2,4,6,8,10) clusters and nitrogen atoms which surround these cores.The average binding energy,the adiabatic electron affinity(AEA),the vertical electron affinity(VEA),the adiabatic ionization potential(AIP) and the vertical ionization potential(VIP) of Mo2nNn(n=1-5) clusters have been estimated.The HOMO-LUMO gaps reveal that the clusters have strong chemical activities.An analysis of Mulliken charge distribution shows that charge-transfer moves from Mo atoms to N atoms and increases with cluster size.  相似文献   

18.
江波  韩修静  毕勤胜 《物理学报》2010,59(12):8343-8347
用动力系统分岔方法研究了一类非线性色散Boussinesq方程.在不同的参数条件下,给出了该方程具有隐函数形式的孤立波解的解析表达式.数值模拟进一步验证了所得结果的正确性.  相似文献   

19.
Using urea as fuel and boric as flux, a novel bluish green emitting phosphor Li2(Ba0.99,Eu0.01)SiO4:B3+ has been successfully synthesized using a combustion method. The material has potential application as the fluorescent material for ultraviolet light-emitting diodes (UV-LEDs). The dependence of the properties of Li2(Ba0.99,Eu0.01)SiO4:B3+ phosphors upon urea concentration, boric acid doping and initiating combustion temperature were investigated. The crystallization and particle sizes of Li2(Ba0.99,Eu0.01)SiO4:B3+ have been investigated by using powder X-ray diffraction (XRD) and transmission electron microscopy (TEM). Luminescence measurements showed that the phosphors can be efficiently excited by ultraviolet (UV) to visible region, emitting a bluish green light with peak wavelength of 490 nm. The results showed that the boric acid was effective in improving the luminescence intensity of Li2(Ba0.99,Eu0.01)SiO4 and the optimum molar ratio of boric acid to barium nitrate was about 0.06. The optimized phosphors Li2(Ba0.99,Eu0.01)SiO4:B0.063+ showed 160% improved emission intensity compared with that of the Li2(Ba0.99,Eu0.01)SiO4 phosphors under UV (λex=350 nm) excitation.  相似文献   

20.
朱革  李卓为  王闯  周发光  温艳  辛双宇 《中国物理 B》2017,26(9):97801-097801
To explore suitable single-phase white emission phosphors for warm white light emitting diodes, a series of novel phosphors Na_3MgZr(PO_4)_3:xDy~(3+)(0 ≤ x ≤ 0.03) is prepared, and their phase purities as well as photoluminescence properties are discussed in depth via x-ray diffraction structure refinement and photoluminescence spectrum measurement.The electronic structure properties of the Na_3MgZr(PO_4)_3host are calculated. The results reveal that Na_3MgZr(PO_4)_3 possesses a direct band gap with a band gap value of 4.917 e V. The obtained Na_3MgZr(PO_4)_3:Dy~(3+) phosphors are all well crystallized in trigonal structure with space group Rc, which has strong absorption around 365 nm and can generate warm white light emissions peaking at 487, 576, and 673 nm upon ultraviolet excitation, which are attributed to the transitions from ~4F_(9/2) to ~6H_(15/2),~6H_(13/2), and ~6H_(11/2) of Dy~(3+) ions, respectively. The optimal doping content, critical distance, decay time, and Commission International de L'Eclairage(CIE) chromaticity coordinates are investigated in Dy~(3+) ion-doped Na_3MgZr(PO_4)_3. The thermal quenching analysis shows that Na_3MgZr(PO_4)_3:Dy~(3+) has a good thermal stability, and the thermal activation energy is calculated. The performances of Na_3MgZr(PO_4)_3:Dy~(3+) make it a potential single-phase white emission phosphor for warm white light emitting diode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号