首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To determine the mechanical behavior of material involving the martensitic phase transformation (for example, steels like 100Cr6), a representative volume element (RVE) model including phase transformation criterion is desireable at micromechanical approach. A framework combining the Eshelby's inclusion theory as well as continuum mechanics with phase-transformation (PT) critical condition at RVE model is presented briefly. And application of this model to estimate the critical aspect ratio of martensitic plate or lath inside homogeneneous stress field is also included, where the RVE can be under uniaxial tension/compression or pure shear loading case. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
This paper presents the conditions that can possibly lead to chaotic motion and bifurcation behavior for a simply-supported large deflection thermo-elastic circular plate with variable thickness by utilizing the criteria of fractal dimensions, maximum Lyapunov exponents and bifurcation diagrams. The governing partial differential equation of the simply supported thermo-elastic circular plate with variable thickness is first derived by means of Galerkin method. Several different features including Fourier spectra, phase plot, Poincar’e map and bifurcation diagrams are numerically computed. These features are used to characterize the dynamic behavior of the plate subjected to various excitations of lateral loads and thermal loads. Numerical examples are presented to verify the conditions that lead to chaotic motion and the effectiveness of the proposed modeling approach. Numerical modeling results indicate that large deflection motion of a thermo-elastic circular plate with variable thickness possesses chaotic motions and bifurcation motion under different lateral loads and thermal loads. The simulation results also indicate that the periodic motion of a circular plate can be obtained for the convex or the concave circular plate. The dynamic motion of the circular plate is periodic for the cases including (1) the lateral loading frequency is within a specific range, (2) thermal and lateral loadings are operated in a specific range and (3) the thickness parameter is less than a specific critical value for the convex circular plate or greater than a specific critical value for the concave circular plate. The modeling results show that the proposed method can be employed to predict the non-linear dynamics of any large deflection circular plate with variable thickness.  相似文献   

3.
This paper presents an approach to characterize the conditions that can possibly lead to chaotic motion for a simply supported large deflection circular plate of thermo-mechanical coupling by utilizing the criterion of the maximum Lyapunov exponent. The governing partial differential equation of the simply supported large deflection circular plate of thermo-mechanical coupling is first derived and simplified to a set of three ordinary differential equations by the Galerkin method. Several different features including time history, Power spectra, phase plot, Poincare map and bifurcation diagram are then numerically computed. These features are used to characterize the dynamic behavior of the plate subjected various geometric and excitation conditions. Numerical examples are presented to verify the validity of the conditions that lead to chaotic motion and the effectiveness of the proposed modeling approach. The modeling results of numerical simulation indicate that the chaotic motion may occurs in the lateral loads , η1=1.1, β=0.5, and =0.0007. As the thermo-elastic damping is great than a critical value, the dynamic motion of the thermal-couple plate is periodic. As the thickness parameter β of the concave circular plate is great than a critical value, the motion of the plate is periodic. The modeling result thus obtained by using the method proposed in this paper can be employed to predict the instability induced by the dynamics of the thermo-mechanical coupling circular plate in large deflection.  相似文献   

4.
Based on the crystallography theory of martensitic transformation and Hill-Rice’s internal variable constitutive theory, a generalized micromechanics constitutive model is established to describe the thermoelastic martensitic transformation and reorientation of single crystal. This model can describe the macroscopic constitutive behavior due to the microstructure changes of forward transformation, reverse transformation and reorientation in single crystal under complex thermodynamic loading condition. The theoretical predictions agree well with the available experiment. Project supported by the National Natural Science Foundation of China and the State Education Commission of China. Due to the limit of space, for detailed derivation, please refer to Yan Wenyi, Micromechanics constitutive researches for transformable materials and transformation localization analysis,Ph.D. Thesis (in Chinese), Beijing: Tsinghua University, 1995.  相似文献   

5.
The martensitic transformation is described using a phase field model which is in mathematical terms the regularization of a sharp interface approach. In this work, up to two martensitic orientation variants are considered. The evolution of microstructure is assumed to follow a time dependent Ginzburg-Landau equation. The coupled problem of the mechanical balance equation and the evolution equations is solved using finite elements and an implicit time integration scheme. In this work, the global energy evolution during the martensitic transformation and the influence of external loads on the formation of the different martensitic phases are studied in 2d. (© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
M. Schleich  F. Pfeiffer 《PAMM》2003,2(1):294-295
Prestrained shape memory alloys change their length when heated above their transformation temperature. This effect can be used to generate high forces in a small workspace, which has particular advantages in actuator design. The optimization and control of the shape memory actuator requires a comprehensive simulation of the material behavior. However, many of the existing models are limited to specific load cases or offer rough approximations only. A material model for shape memory alloys from Seelecke [1] is examined in this paper. This model describes the behavior of a shape memory wire, which is heated by electric current. It is implemented in a simulation program to investigate the actuator output and to improve the performance. Finally, the parameters of the simulation are adapted to experimental results.  相似文献   

7.
This paper analyses the large deflections of an orthotropic rectangular clamped and simply supported thin plate. A hybrid method which combines the finite difference method and the differential transformation method is employed to reduce the partial differential equations describing the large deflections of the orthotropic plate to a set of algebraic equations. The simulation results indicate that significant errors are present in the numerical results obtained for the deflections of the orthotropic plate in the transient state when a step force is applied. The magnitude of the numerical error is found to reduce, and the deflection of the orthotropic plate to converge, as the number of sub-domains considered in the solution procedure increases. The deflection of the simply supported orthotropic plate is great than the clamped orthotropic plate. The current modeling results confirm the applicability of the proposed hybrid method to the solution of the large deflections of a rectangular orthotropic plate.  相似文献   

8.
This article focuses on two methods to approximate the log-likelihood of discretely observed univariate diffusions: (1) the simulation approach using a modified Brownian bridge as the importance sampler, and (2) the closed-form approximation approach. For the case of constant volatility, we give a theoretical justification of the modified Brownian bridge sampler by showing that it is exactly a Brownian bridge. We also discuss computational issues in the simulation approach such as accelerating the numerical variance stabilizing transformation, computing derivatives of the simulated log-likelihood, and choosing initial values of parameter estimates. The two approaches are compared in the context of financial applications under a benchmark model which has an unknown transition density and has no analytical variance stabilizing transformation. The closed-form approximation, particularly the second-order closed-form, is found to be computationally efficient and very accurate when the observation frequency is monthly or higher. It is more accurate in the center than in the tails of the transition density. The simulation approach combined with the variance stabilizing transformation is found to be more reliable than the closed-form approximation when the observation frequency is lower. Both methods perform better when the volatility level is lower, but the simulation method is more robust to the volatility level. When applied to two well-known datasets of daily observations, the two methods yield similar parameter estimates in both datasets but slightly different log-likelihoods in the case of higher volatility.  相似文献   

9.
The upper and lower bound principals of limit analysis are employed to determine the critical loading on solid circular plate with simply supported boundary conditions and subjected to any distributed loading with rotational symmetry. In this study, material behavior follows a rigid perfectly plastic model and yielding obeys the von-Mises criterion. Homotopy analysis method is employed to achieve the analytical solution to the high nonlinear ordinary differential equations governing the problem. This analytic solution has been obtained in terms of convergent series with easily computable terms. The results are verified with the Tresca yield criterion and presented as plots to show the reliability and simplicity of the method.  相似文献   

10.
The despatch bay is a critical interface within an organisation, linking the warehousing and transport operations. However, delays here have wider supply chain implications given that the flow of materials through the supply chain is disrupted. Despite this, there has been little research on improvement activities to this process. This paper uses a case study of a steel processor to develop a simulation model to test strategies for increasing despatch bay productivity. From the simulation results, it was found that a combination of improvements were needed, to both reduce process times and ensure the earlier receipt of orders. The research approach presented in this paper can be used in other business environments having similar operating conditions.  相似文献   

11.
This contribution is concerned with the formulation of a 1D-constitutive model accounting for the pseudoelastic behavior of shape memory alloys. The stress-strain-relationship is idealized by a hysteresis both in the compression as in the tension loading range. It is characterized by an upper loading path, which is to be ascribed to the transformation of the lattice to a martensitic structure. Unloading the material, a lower path is described, because of the reverse transformation into austenitic lattice. The constitutive model is based on a switching criterion which serves as a potential function for the evolution of the internal state variables. The model distinguishes between local and global variables to describe the hysteresis effects for the compression and tension range. A strain driven algorithm which captures the complete nonlinear material behavior is presented. The boundary value problem is solved for a truss element applying the finite element method. A consistent linearization of the nonlinear equations is derived. Simple examples will demonstrate the applicability of the proposed model. For future developments the usage of shape memory alloys within civil engineering structures is aimed. The advantage of the material is the very good damping behavior and the potential to overcome great strains. Both properties are distinguished to be of engineering interest. (© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
The problem on the terminal motion of a thin elliptic plate over a horizontal plane taking into account orthotropic friction forces has been considered. Differential equations of the movement of the plate have been derived. The system of equations has been numerically solved under various initial conditions. It has been shown that sliding and spinning cease simultaneously. It has been found that the limiting behavior of the plate is governed not only by the ratio of the moment of inertia to the coefficient of friction, but also by the orientation of the plate. A comparison of the behaviors of the elliptic and circular plates has been carried out. The results of the calculations can be used to describe the phenomena that occur in a rail–wheel contact in more detail.  相似文献   

13.
The aim of this study is to present an efficient model for the analysis of complicated nonlinear transient dynamics of an elastic-plastic plate subjected to a transversely eccentric low-velocity impact. A mixed numerical–analytical model is presented to predict the transient dynamic behaviours consisting of either plate impact responses or wave propagations induced by the impact in a plate with an arbitrary shape and support. This hybrid approach has been validated by comparison with results of laboratory tests performed on an elastic-perfectly plastic narrow plate eccentrically struck by an elastic sphere, and results of a three-dimensional finite element (FE) analysis for an elastic-perfectly plastic simply-supported rectangular plate eccentrically struck by an elastic sphere. The advantages of this hybrid approach are in the simplification of local contact force formulation, computational efficiency over the FE model, and convenient application to parametric study for eccentric impact behaviour. The hybrid approach can provide accurate predictions of the plate impact responses and plate wave propagations.  相似文献   

14.
Metallic materials often exhibit a complex microstructure with varying material properties in the different phases. Of major importance in mechanical engineering is the evolution of the austenitic and martensitic phases in steel. The martensitic transformation can be induced by heat treatment or by plastic surface deformation at low temperatures. A two dimensional elastic phase field model for martensitic transformations considering several martensitic orientation variants to simulate the phase change at the surface is introduced in [1]. However here, only one martensitic orientation variant is considered for the sake of simplicity. The separation potential is temperature dependent. Therefore, the coefficients of the Landau polynomial are identified by results of molecular dynamics (MD) simulations for pure iron [1]. The resulting separation potential is applied to analyse the mean interface velocity with respect to temperature and load. The interface velocity is computed by use of the dissipative part to the configurational forces balance as suggested in [3]. The model is implemented in the finite element code FEAP using standard 4-node elements with bi-linear shape functions. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
Simon Schmidt  Ralf Müller 《PAMM》2017,17(1):561-562
We study the martensitic transformation with a phase field model, where we consider the Bain transformation path in a small strain setting. For the order parameter, interpolating between an austenitic parent phase and martensitic phases, we use a Ginzburg-Landau evolution equation, assuming a constant mobility. In [1], a temperature dependent separation potential is introduced. We use this potential to extend the model in [2], by considering a transient temperature field, where the temperature is introduced as an additional degree of freedom. This leads to a coupling of both the evolution equation of the order parameter and the mechanical field equations (in terms of thermal expansion) with the heat equation. The model is implemented in FEAP as a 4-node element with bi-linear shape functions. Numerical examples are given to illustrate the influence of the temperature on the evolution of the martensitic phase. (© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
The main purpose of the present paper is to compare two different kinds of approaches in modeling the deck of a suspension bridge: in the first approach we look at the deck as a rectangular plate and in the second one we look at the deck as a beam for vertical deflections and as a rod for torsional deformations. Throughout this paper we will refer to the model corresponding to the second approach as the beam-rod model. In our discussion, we observe that the beam-rod model contains a larger number of elastic parameters if compared with the isotropic plate model. For this reason the beam-rod model is supposed to be more appropriate to describe the behavior of the deck of a real suspension bridge. A possible strategy to make the plate model more efficient could be to relax the isotropy condition with a more general condition of orthotropy, which is expected to increase the number of elastic parameters. In this new setting, a comparison between the two approaches becomes now possible.Basic results are proved for the suggested problem, from existence and uniqueness of solutions to spectral properties. We suggest realistic values for the elastic parameters thus obtaining with both approaches similar responses in the static and dynamic behavior of the deck. This can be considered as a preliminary article since many work has still to be done with the perspective of formulating models for a complete suspension bridge which take into account not only the deck but also the action on it of cables and hangers. With this perspective, a section is devoted to possible future developments.  相似文献   

17.
For diffusions, a well-developed approach in rare event estimation is to introduce a suitable factorization of the reach probability and then to estimate these factors through simulation of an Interacting Particle System (IPS). This paper studies IPS based reach probability estimation for General Stochastic Hybrid Systems (GSHS). The continuous-time executions of a GSHS evolve in a hybrid state space under influence of combinations of diffusions, spontaneous jumps and forced jumps. In applying IPS to a GSHS, simulation of the GSHS execution plays a central role. From literature, two basic approaches in simulating GSHS execution are known. One approach is direct simulation of a GSHS execution. An alternative is to first transform the spontaneous jumps of a GSHS to forced transitions, and then to simulate executions of this transformed version. This paper will show that the latter transformation yields an extra Markov state component that should be treated as being unobservable for the IPS process. To formally make this state component unobservable for IPS, this paper also develops an enriched GSHS transformation prior to transforming spontaneous jumps to forced jumps. The expected improvements in IPS reach probability estimation are also illustrated through simulation results for a simple GSHS example.  相似文献   

18.
Many governments are striving to implement sustainable development programs. While there are many definitions of `sustainability', most agree that a more comprehensive information infrastructure including economic, social, environmental, and cultural measures is required to assess courses of action and evaluate progress. Also critical is the development of information about the structure and behavior of the systems in which decisions are made. Most of the efforts toward the identification of information to support sustainable development decision making have focused on developing measures of progress toward sustainability. The Pressure-State-Response framework has been suggested as a method for capturing perceptions of causality. This framework fails to capture important information about complex causal relationships and system behavior. A systems approach to identifying decisive information is discussed as an alternative. This approach supports the identification of relationships among the indicators, learning about the behavior of the system, and provides a common language for interdisciplinary communication.  相似文献   

19.
In lots of lightweight applications, constructions are also made by honeycomb sandwiches but little is known about failure and dynamic behavior of sandwich plate connections. In this research, an experimental and simulation study of the mechanical and failure behavior of honeycomb sandwich plates and joints are performed. In detail, series of tensile test have been conducted under quasi static conditions and failure behavior and resistance of the specimens are investigated. The specimens are made by phenolic resin-impregnated aramid paper as core and two different layers of glass fiber reinforced plastic as face sheets in each side. In addition to the experimental tests, numerical simulation with finite element models are performed in Abaqus. Failure modes are investigated and finally a good agreement between test data and simulation results is achieved. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
This study is conducted to determine the post buckling behavior of circular homogenous plates with non-concentric hole subjected to uniform radial loading using Rayleigh–Ritz method. In order to implement the method, a computer program has been developed and several numerical examples for different boundary conditions are presented to illustrate the scope and efficacy of the procedure. The integration is carried out in natural coordinates through a proper transformation. Consequently, the displacement fields respect to natural coordinates are expressed using the Hierarchical, Hermitian and Fourier series shape functions for interpolating the out-of-plane displacement field and Fourier series and Hierarchical, Lagrange shape functions for interpolating the in-plane displacement field of plate. The Kirchhoff theory is used to formulate the problem in buckling condition. Due to the asymmetry in geometry, the in-plane solution is required to find the stress distribution. Finally, the problem is formulated in post buckling condition using Von-Karman non-linear theory, and a proper Hookean displacement field is presented to analyze the post buckling behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号