首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We study stability of antisymmetric periodic solutions to delay differential equations. We introduce a one-parameter family of periodic solutions to a special system of ordinary differential equations with a variable period. Conditions for stability of an antisymmetric periodic solution to a delay differential equation are stated in terms of this period function.  相似文献   

2.
In this paper, the dynamical behavior of an eco-epidemiological model with discrete and distributed delay is studied. Sufficient conditions for the local asymptotical stability of the nonnegative equilibria are obtained. We prove that there exists a threshold value of the feedback time delay τ beyond which the positive equilibrium bifurcates towards a periodic solution. Using the normal form theory and center manifold argument, the explicit formulae which determine the stability, the direction and the periodic of bifurcating period solutions are derived. Numerical simulations are carried out to explain the mathematical conclusions.  相似文献   

3.
In this paper, a SEIR epidemic model with nonlinear incidence rate and time delay is investigated in three cases. The local stability of an endemic equilibrium and a disease-free equilibrium are discussed using stability theory of delay differential equations. The conditions that guarantee the asymptotic stability of corresponding steady-states are investigated. The results show that the introduction of a time delay in the transmission term can destabilize the system and periodic solutions can arise through Hopf bifurcation when using the time delay as a bifurcation parameter. Applying the normal form theory and center manifold argument, the explicit formulas determining the properties of the bifurcating periodic solution are derived. In addition, the effect of the inhibitory effect on the properties of the bifurcating periodic solutions is studied. Numerical simulations are provided in order to illustrate the theoretical results and to gain further insight into the behaviors of delayed systems.  相似文献   

4.
We consider a delayed predator-prey system. We first consider the existence of local Hopf bifurcations, and then derive explicit formulas which enable us to determine the stability and the direction of periodic solutions bifurcating from Hopf bifurcations, using the normal form theory and center manifold argument. Special attention is paid to the global existence of periodic solutions bifurcating from Hopf bifurcations. By using a global Hopf bifurcation result due to Wu [Trans. Amer. Math. Soc. 350 (1998) 4799], we show that the local Hopf bifurcation implies the global Hopf bifurcation after the second critical value of delay. Finally, several numerical simulations supporting the theoretical analysis are also given.  相似文献   

5.
In this paper, a ratio-dependent predator–prey model with time delay is investigated. We first consider the local stability of a positive equilibrium and the existence of Hopf bifurcations. By using the normal form theory and center manifold reduction, we derive explicit formulae which determine the stability, direction and other properties of bifurcating periodic solutions. Finally, we consider the effect of impulses on the dynamics of the above time-delayed population model. Numerical simulations show that the system with constant periodic impulsive perturbations admits rich complex dynamic, such as periodic doubling cascade and chaos.  相似文献   

6.
In this paper, a discrete-time Hopfield neural network with delay is considered. We give some sufficient conditions ensuring the local stability of the equilibrium point for this model. By choosing the delay as a bifurcation parameter, we demonstrated that Neimark–Sacker bifurcation (or Hopf bifurcation for map) would occur when the delay exceeds a critical value. A formula for determining the direction bifurcation and stability of bifurcation periodic solutions is given by applying the normal form theory and the center manifold theorem. Some numerical simulations for justifying the theoretical results are also provided.  相似文献   

7.
In this paper we mainly study the existence of periodic solutions for a system of delay differential equations representing a simple two-neuron network model of Hopfield type with time-delayed connections between the neurons. We first examine the local stability of the trivial solution, propose some sufficient conditions for the uniqueness of equilibria and then apply the Poincaré–Bendixson theorem for monotone cyclic feedback delayed systems to establish the existence of periodic solutions. In addition, a sufficient condition that ensures the trivial solution to be globally exponentially stable is also given. Numerical examples are provided to support the theoretical analysis.  相似文献   

8.
In this paper we mainly study the existence of periodic solutions for a system of delay differential equations representing a simple two-neuron network model of Hopfield type with time-delayed connections between the neurons. We first examine the local stability of the trivial solution, propose some sufficient conditions for the uniqueness of equilibria and then apply the Poincaré-Bendixson theorem for monotone cyclic feedback delayed systems to establish the existence of periodic solutions. In addition, a sufficient condition that ensures the trivial solution to be globally exponentially stable is also given. Numerical examples are provided to support the theoretical analysis.  相似文献   

9.
It is acknowledged that coral reefs are globally threatened. P.J. Mumby et al. [10] constructed a mathematical model with ordinary differential equations to investigate the dynamics of coral reefs. In this paper, we first provide a detailed global analysis of the coral reef ODE model in [10]. Next we incorporate the inherent time delay to obtain a mathematical model with delay differential equations. We consider the grazing intensity and the time delay as focused parameters and perform local stability analysis for the coral reef DDE model. If the time delay is sufficiently small, the stability results remain the same. However, if the time delay is large enough, macroalgae only state and coral only state are both unstable, while they are both stable in the ODE model. Meanwhile, if the grazing intensity and the time delay are endowed some suitable values, the DDE model possesses a nontrivial periodic solution, whereas the ODE model has no nontrivial periodic solutions for any grazing rate. We study the existence and property of the Hopf bifurcation points and the corresponding stability switching directions.  相似文献   

10.
In this paper, we are concerned with the existence of solutions of systems determined by abstract functional differential equations with infinite and state‐dependent delay. We establish the existence of mild solutions and the existence of periodic solutions. Our results are based on local Lipschitz conditions of the involved functions. We apply our results to study the existence of periodic solutions of a partial differential equation with infinite and state‐dependent delay. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
In this study, we present a modified mathematical model of tumor growth by introducing discrete time delay in interaction terms. The model describes the interaction between tumor cells, healthy tissue cells (host cells) and immune effector cells. The goal of this study is to obtain a better compatibility with reality for which we introduced the discrete time delay in the interaction between tumor cells and host cells. We investigate the local stability of the non-negative equilibria and the existence of Hopf-bifurcation by considering the discrete time delay as a bifurcation parameter. We estimate the length of delay to preserve the stability of bifurcating periodic solutions, which gives an idea about the mode of action for controlling oscillations in the tumor growth. Numerical simulations of the model confirm the analytical findings.  相似文献   

12.
We first establish a result giving conditions that certain undamped delay differential equations with almost periodic time dependence have unique almost periodic solutions. Using this result we obtain conditions that a second order scalar nonlinear delay differential equation with almost periodic forcing will have a unique almost periodic solution having saddle-type stability properties. These results use the method of averaging.

  相似文献   


13.
A stage-structured predator-prey system with time delay is considered. By analyzing the corresponding characteristic equation, the local stability of a positive equilibrium is investigated. The existence of Hopf bifurcations is established. Formulae are derived to determine the direction of bifurcations and the stability of bifurcating periodic solutions by using the normal form theory and center manifold theorem. Numerical simulations are carried out to illustrate the theoretical results. Based on the global Hopf bifurcation theorem for general functional differential equations, the global existence of periodic solutions is established.  相似文献   

14.
This review covers permanence, oscillation, local and global stability of solutions for Nicholson’s blowflies differential equation. Some generalizations, including the most recent results for equations with a distributed delay and models with periodic coefficients, are considered.  相似文献   

15.
A three-dimensional enterprise competitive model with time delay is considered. Where the delay is regarded as bifurcation parameters. By analyzing the corresponding characteristic equation of positive equilibrium,the local stability of positive equilibrium is regarded. By using the normal form method and center manifold theorem, we give the formula for determining the direction of the Hopf bifurcation and the stability of bifurcating periodic solutions. Numerical simulations are shown to illustrate the obtained results.  相似文献   

16.
A neural network model with three neurons and a single delay is considered. The existence of local Hopf bifurcations is first considered and then explicit formulas are derived by using the normal form method and center manifold theory to determine the direction of the Hopf bifurcations and the stability of the bifurcating periodic solutions. A global Hopf bifurcation theorem due to Wu and a Bendixson's criterion for high-dimensional ODE due to Li and Muldowney are used to obtain a group of conditions for the system to have multiple periodic solutions when the delay is sufficiently large. Finally, numerical simulations are carried out to support the theoretical analysis of the research.  相似文献   

17.
The purpose of this paper is to study a class of delay differential equations with two delays. first, we consider the existence of periodic solutions for some delay differential equations. Second, we investigate the local stability of the zero solution of the equation by analyzing the correlocal stability of the zero solution of the equation by analyzing the corresponding characteristic equation of the linearized equation. The exponential stability of a perturbed delay differential system with a bounded lag is studied. Finally, by choosing one of the delays as a bifurcation parameter, we show that the equation exhibits Hopf and saddle-node bifurcations.  相似文献   

18.
We study the behavior of dynamic processes in a mathematical predator-prey model and show that the dynamical system may have a periodic solution whose period coincides with the delay. By the bifurcation method for stability analysis of periodic solutions, we establish that this periodic solution is unstable.  相似文献   

19.
In this paper, a congestion control algorithm with heterogeneous delays in a wireless access network is considered. We regard the communication time delay as a bifurcating parameter to study the dynamical behaviors, i.e., local asymptotical stability, Hopf bifurcation and resonant codimension-two bifurcation. By analyzing the associated characteristic equation, the Hopf bifurcation occurs when the delay passes through a sequence of critical value. Furthermore, the direction and stability of the bifurcating periodic solutions are derived by applying the normal form theory and the center manifold theorem. In the meantime, the resonant codimension-two bifurcation is also found in this model. Some numerical examples are finally performed to verify the theoretical results.  相似文献   

20.
In this paper we consider a generic differential equation with a cubic nonlinearity and delay. This system, in the absence of delay, is known to undergo an oscillatory instability. The addition of the delay is shown to result in the creation of a number of periodic solutions with constant amplitude and a constant frequency; the number of solutions increases with the size of the delay. Indeed, for many physical applications in which oscillatory instabilities are induced by a delayed response or feedback mechanism, the system under consideration forms the underlying backbone for a mathematical model. Our study showcases the effectiveness of performing a numerical bifurcation analysis, alongside the use of analytical and geometrical arguments, in investigating systems with delay. We identify curves of codimension-one bifurcations of periodic solutions. We show how these curves interact via codimension-two bifurcation points: double singularities which organise the bifurcations and dynamics in their local vicinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号