首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this Letter, we study generalized relativistic billiards: as a particle reflects from the boundary of the domain, its velocity is transformed as if the particle underwent an elastic collision with a moving wall, considered within the framework of the special theory of relativity. Inside the domain, the particle moves under the influence of some gravitational and nongravitational force fields.We study both periodic and 'monotone' action of the boundary. We prove that under some general conditions the invariant manifold in the velocity phase space of the generalized billiard, where the point velocity equals the velocity of light, is an exponential attractor, and for an open set of initial conditions the particle energy tends to infinity.  相似文献   

2.
A dispersing billiard (Lorentz gas) and focusing billiards (in the form of a stadium) with time-dependent boundaries are considered. The problem of a particle acceleration in such billiards is studied. For the Lorentz gas two cases of the time-dependence are investigated: stochastic perturbations of the boundary and its periodic oscillations. Two types of focusing billiards with periodically forced boundaries are explored: stadium with strong chaotic properties and a near-rectangle stadium. It is shown that in all cases billiard particles can reach unbounded velocities. Average velocities of the particle ensemble as functions of time and the number of collisions are obtained.  相似文献   

3.
The paper is devoted to the problem of Fermi acceleration in Lorentz-type dispersing billiards whose boundaries depend on time in a certain way. Two cases of boundary oscillations are considered: the stochastic case, when a boundary changes following a random function, and a regular case with a boundary varied according to a harmonic law. Analytic calculations show that the Fermi acceleration takes place in such systems. The first and second moments of the velocity increment of a billiard particle, alongside the mean velocity in a particle ensemble as a function of time and number of collisions, have been investigated. Velocity distributions of particles have been obtained. Analytic and numerical calculations have been compared. Zh. éksp. Teor. Fiz. 116, 1781–1797 (November 1999)  相似文献   

4.
We present an experimental investigation of gravitational billiards where the particle undergoes inelastic collisions with its boundary. The motion is mapped for an inelastic particle contained within parabolic, wedge, and hyperbolic boundaries. For the parabola, stable orbits are found and the wedge demonstrates a characteristic instability for its vertex angle. In the instance of the hyperbola, there are several features of the dynamics similar to the parabola at low driving and the wedge for higher driving. However, the low driving case for a hyperbola can only be completely understood by considering inelasticity effects predicted by a numerical simulation and the observation that the velocity dependent inelasticity allows the particle to sample several nearby trajectories for fixed driving.  相似文献   

5.
This paper deals with the study of the effect of MHD on thin films of a micropolar fluid. These thin films are considered for three different geometries, namely: (i) flow down an inclined plane, (ii) flow on a moving belt and (iii) flow down a vertical cylinder. The transformed boundary layer governing equations of a micropolar fluid and the resulting system of coupled non-linear ordinary differential equations are solved numerically by using shooting method. Numerical results were presented for velocity and micro-rotation profiles within the boundary layer for different parameters of the problem including micropolar fluid parameters, magnetic field parameter, etc., which are also discussed numerically and illustrated graphically.  相似文献   

6.
Generalized billiards describe nonequilibrium gas, consisting of finitely many particles, that move in a container, whose walls heat up or cool down. Generalized billiards can be considered both in the framework of the Newtonian mechanics and of the relativity theory. In the Newtonian case, a generalized billiard may possess an invariant measure; the Gibbs entropy with respect to this measure is constant. On the contrary, generalized relativistic billiards are always dissipative,and the Gibbs entropy with respect to the same measure grows under some natural conditions. In this article, we find the necessary and sufficient conditions for a generalized Newtonian billiard to possess a smooth invariant measure, which is independent of the boundary action: the corresponding classical billiard should have an additional first integral of special type. In particular,the generalized Sinai billiards do not possess a smooth invariant measure. We then consider generalized billiards inside a ball, which is one of the main examples of the Newtonian generalized billiards which does have an invariant measure. We construct explicitly the invariant measure, and find the conditions for the Gibbs entropy growth for the corresponding relativistic billiard both formonotone and periodic action of the boundary.  相似文献   

7.
A method is developed for the treatment of the Bethe-Faddeev three body cluster equations in finite nuclei. A matrix method is employed to sum the three hole line graphs in 4He. For each value of a constant shift C in the intermediate state oscillator spectrum we have calculated: (i) the two body bound state binding energy self-consistently in the Brueckner approximation, (ii) the energy contribution from three hole line graphs, and (iii) the effect of single particle potential insertion in particle lines. The most important dependence on C comes from those graphs containing single particle insertions and their effect is to make the sum of (i) + (ii) + (iii) much less dependent upon C than (i) alone. The three hole line contribution for 4He comes mainly from third order graphs. Effects of truncation of the matrix are severe and calculations with a larger matrix could alter the quantitative but probably not the qualitative results.  相似文献   

8.
We report the results of a periodic orbit quantization of classically chaotic billiards beyond Gutzwiller approximation in terms of asymptotic series in powers of the Planck constant (or in powers of the inverse of the wave number kappa in billiards). We derive explicit formulas for the kappa(-1) approximation of our semiclassical expansion. We illustrate our theory with the classically chaotic scattering of a wave on three disks. The accuracy on the real parts of the scattering resonances is improved by one order of magnitude.  相似文献   

9.
Some scaling properties for a classical particle confined to bounce between two walls, where one wall is fixed and the other one moves in time according to a random signal with a memory length are studied. We have considered two different kinds of collisions of the particle with the moving wall namely: (i) elastic and (ii) inelastic. The dynamics of the model is described in terms of a two-dimensional nonlinear mapping. For the case of elastic collisions, we show that the memory of the stochastic signal affects directly the behaviour of the average velocity of the particle. It then exhibits different slopes for the average velocity at different stages of the series with β≅3/4 for a short time, β≅1 for the average stage and β≅1/2 for a long time, as predicted by the Central Limit Theorem, therefore leading to the Fermi acceleration. The situation where inelastic collisions are taken into account yields a more drastic change, particularly suppressing the Fermi acceleration.  相似文献   

10.
The orbital magnetism of two-dimensional electrons in mesoscopic samples is studied in models where the interaction between electrons is neglected. Various geometries are considered as there are disc, plaquette, bracelet with hard wall confinement and also a confinement with a parabolic potential. We calculate the average magnetic moment which means an average with respect to size fluctuations and de Haas-van Alphen oscillations which arise in the case of a sharp Fermi cutoff. We see three distinct ranges in the magnetic field: (i) small field region where perturbation theory applies; (ii) moderate fields where edge currents play a prominent role; and (iii) the high field range with a Landau type susceptibility. In a quasiclassical picture, the electronic orbits are not qualitatively changed by a magnetic field in (i); skipping orbits are important in (ii); and in (iii), the cyclotron radius is smaller than the sample size. As a rule, we find an enhancement of the magnetic response which increases with kFL, that is, with sample size divided by the Fermi wave length. Also, we have found out that the quasiclassical approximation fails in the calculation of the magnetic properties; on the other hand, we have seen no essential differences between the canonical ensemble (fixed particle number) and the grand canonical ensemble (chemical potential given). In the case of plaquettes, in particular for samples in the form of squares, we have found agreement with experimental results by Lévy, Reich, Pfeiffer and West.  相似文献   

11.
The Wulff construction yields the equilibrium shape of a particle of fixed volume embedded in a single phase at constant temperature. When the particle attaches to an interface (boundary) between two distinct phases or grains of the same phase, the Wulff construction must be modified to account for the abutment of Wulff shapes at the boundary as well as the boundary energy that is replaced by the particle. If the boundary is non-deformable, a portion of the particle interface is constrained to replace the image (i.e. the exact position) of the boundary that is removed, and the Winterbottom construction yields the equilibrium particle shape. If the boundary can deform, the particle is not constrained to replace the image of removed boundary, and the particle shape is determined by a more general modification of the Wulff construction. In two dimensions, the particle attaches to an initially flat boundary and creates two disjoint segments that remain flat at equilibrium. In three dimensions, the boundary surrounding the particle is contiguous, and numerical calculations show that such a boundary is not necessarily flat but maintains a constant mean curvature of zero at equilibrium.  相似文献   

12.
Classical-quantum correspondence has been an intriguing issue ever since quantum theory was proposed. The searching for signatures of classically nonintegrable dynamics in quantum systems comprises the interesting field of quantum chaos. In this short review, we shall go over recent efforts of extending the understanding of quantum chaos to relativistic cases. We shall focus on the level spacing statistics for two-dimensional massless Dirac billiards, i.e., particles confined in a closed region. We shall discuss the works for both the particle described by the massless Dirac equation(or Weyl equation)and the quasiparticle from graphene. Although the equations are the same, the boundary conditions are typically different,rendering distinct level spacing statistics.  相似文献   

13.
We present a new numerical model of the thermal force in a plasma, based on the Monte Carlo Binary Collision Model (BCM) [T. Takizuka, H. Abe, J. Comput.Phys. 25 (1977) 205]. This model can be applied for the transport simulation of test ions. The model consists of two steps: (i) choosing a background plasma ion velocity from a distorted Maxwell distribution under the temperature gradient, and (ii) calculating a Coulomb collision between a test particle and the above chosen ion by using the BCM. For the step (i), we developed a velocity sampling method from a distorted Maxwellian, which enables the BCM to bring the thermal force on a test particle in the step (ii).A systematic series of simulations has been performed under various conditions to examine the model. The results of these simulations have been compared with the theoretical values, and it is shown that our model simulates the thermal force correctly for important characteristic features; dependences on the temperature gradient, the test particle velocity, and the background plasma density.  相似文献   

14.
Approximating Multi-Dimensional Hamiltonian Flows by Billiards   总被引:2,自引:2,他引:0  
The behavior of a point particle traveling with a constant speed in a region , undergoing elastic collisions at the regions’s boundary, is known as the billiard problem. Various billiard models serve as approximation to the classical and semi-classical motion in systems with steep potentials (e.g. for studying classical molecular dynamics, cold atom’s motion in dark optical traps and microwave dynamics). Here we develop methodologies for examining the validity and accuracy of this approximation. We consider families of smooth potentials , that, in the limit , become singular hard-wall potentials of multi-dimensional billiards. We define auxiliary billiard domains that asymptote, as to the original billiards, and provide, for regular trajectories, asymptotic expansion of the smooth Hamiltonian solution in terms of these billiard approximations. The asymptotic expansion includes error estimates in the C r norm and an iteration scheme for improving this approximation. Applying this theory to smooth potentials that limit to the multi-dimensional close to ellipsoidal billiards, we predict when the billiard’s separatrix splitting (which appears, for example, in the nearly flat and nearly oblate ellipsoids) persists for various types of potentials.  相似文献   

15.
Diego F.M. Oliveira 《Physica A》2010,389(5):1009-728
Some dynamical properties of a classical particle confined inside a closed region with an oval-shaped boundary are studied. We have considered both the static and time-dependent boundaries. For the static case, the condition that destroys the invariant spanning curves in the phase space was obtained. For the time-dependent perturbation, two situations were considered: (i) non-dissipative and (ii) dissipative. For the non-dissipative case, our results show that Fermi acceleration is observed. When dissipation, via inelastic collisions, is introduced Fermi acceleration is suppressed. The behaviour of the average velocity for both the dissipative as well as the non-dissipative dynamics is described using the scaling approach.  相似文献   

16.
Test particle motion and acceleration has been explored in strong radio frequency (RF) fields, for which quasilinear ponderomotive force approximation is not valid. By nonlinear acceleration in spatially varying wave amplitude of RF travelling wave, electrons may be accelerated to time averaged velocities significantly larger than the RF wave phase velocity, and than the boundary plasma thermal velocity, in RF fields of several Volts per centimeter at wave frequency of 7 MHz. It is also demonstrated that even weak spatial gradients, much weaker than those expected in experiments, of the RF wave field amplitude, have significant consequences for the particle motion. Estimates are presented of the total energy transferred from the near antenna RF field to the plasma due to the nonlinear electron acceleration effects.  相似文献   

17.
A study of ray trajectories was undertaken for the Tamm medium which represents the spacetime of a zero-tension cosmic spinning string, under the geometric-optics approximation. Our numerical studies revealed that: (i) rays never cross the string's boundary; (ii) the Tamm medium supports evanescent waves in regions of phase space that correspond to those regions of the string's spacetime which could support closed timelike curves; and (iii) a spinning string can be slightly visible while a non-spinning string is almost perfectly invisible.  相似文献   

18.
We analyze particle velocity fluctuations in a simulated granular system subjected to homogeneous quasistatic shearing. We show that these fluctuations share the following scaling characteristics of fluid turbulence in spite of their different physical origins: (i) scale-dependent probability distribution with non-Gaussian broadening at small time scales; (ii) spatial power spectrum of the velocity field showing a power-law decay, reflecting long-range correlations and the self-affine nature of the fluctuations; and (iii) superdiffusion of particles with respect to the mean background flow.  相似文献   

19.
We rigorously prove that the homomorphic coherent potential approximation (HCPA) is analytic. Along a way analogous to the proof for the analyticity of the molecular coherent potential approximation by Ducastelle, we show the HCPA always provides a physical solution for the average Green's function which satisfies (i) the reality, (ii) definiteness, (iii) analyticity and (iv) boundary conditions.  相似文献   

20.
Billiards in the form of a stadium with perturbed boundaries are considered. Investigations are primarily devoted to billiards having a near-rectangle form, but the results regarding the classical stadium with the boundary that consists of two semicircles and two parallel segments tangent to them, are also described. In the phase plane, areas corresponding to decrease and increase of the velocity of billiard particles are found. The average velocity of the particle ensemble as a function of the number of collisions with the boundary is obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号