首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider chaotic oscillator synchronization and propose a new approach for detecting the synchronized behavior of chaotic oscillators. This approach is based on analysis of different time scales in the time series generated by coupled chaotic oscillators. We show that complete synchronization, phase synchronization, lag synchronization, and generalized synchronization are particular cases of the synchronized behavior called time-scale synchronization. A quantitative measure of chaotic oscillator synchronous behavior is proposed. This approach is applied to coupled Rössler systems.  相似文献   

2.
Phase synchronization in unidirectionally coupled chaotic ratchets   总被引:2,自引:0,他引:2  
We study chaotic phase synchronization of unidirectionally coupled deterministic chaotic ratchets. The coupled ratchets were simulated in their chaotic states and perfect phase locking was observed as the coupling was gradually increased. We identified the region of phase synchronization for the ratchets and show that the transition to chaotic phase synchronization is via an interior crisis transition to strange attractor in the phase space.  相似文献   

3.
双向耦合混沌系统广义同步   总被引:3,自引:0,他引:3       下载免费PDF全文
张平伟  唐国宁  罗晓曙 《物理学报》2005,54(8):3497-3501
提出了用条件熵来测定双向耦合混沌系统的广义同步,随着耦合强度的增大,当条件熵有一突出的最小值出现时表明两系统达到广义同步.为了证明这种方法的有效性,将这种方法用 于Rssler-Lorenz与Rssler-Rssler混沌系统的双向耦合情况,数值模拟结果表明该方 法非常有效且具有较强的鲁棒性. 关键词: 广义同步 双向耦合 条件熵  相似文献   

4.
In this paper, based on the invariant principle of functional differential equations, a simple, analytical, and rigorous adaptive feedback scheme is proposed for the synchronization of almost all kinds of coupled identical neural networks with time-varying delay, which can be chaotic, periodic, etc. We do not assume that the concrete values of the connection weight matrix and the delayed connection weight matrix are known. We show that two coupled identical neural networks with or without time-varying delay can achieve synchronization by enhancing the coupling strength dynamically. The update gain of coupling strength can be properly chosen to adjust the speed of achieving synchronization. Also, it is quite robust against the effect of noise and simple to implement in practice. In addition, numerical simulations are given to show the effectiveness of the proposed synchronization method.  相似文献   

5.
The notion of phase synchronization in time-delay systems, exhibiting highly non-phase-coherent attractors, has not been realized yet even though it has been well studied in chaotic dynamical systems without delay. We report the identification of phase synchronization in coupled nonidentical piecewise linear and in coupled Mackey-Glass time-delay systems with highly non-phase-coherent regimes. We show that there is a transition from nonsynchronized behavior to phase and then to generalized synchronization as a function of coupling strength. We have introduced a transformation to capture the phase of the non-phase-coherent attractors, which works equally well for both the time-delay systems. The instantaneous phases of the above coupled systems calculated from the transformed attractors satisfy both the phase and mean frequency locking conditions. These transitions are also characterized in terms of recurrence-based indices, namely generalized autocorrelation function P(t), correlation of probability of recurrence, joint probability of recurrence, and similarity of probability of recurrence. We have quantified the different synchronization regimes in terms of these indices. The existence of phase synchronization is also characterized by typical transitions in the Lyapunov exponents of the coupled time-delay systems.  相似文献   

6.
何国光  朱萍  陈宏平  谢小平 《物理学报》2010,59(8):5307-5312
将阈值控制方法应用于混沌神经元团簇,构成阈值耦合混沌神经元映射,研究其时空特性.仿真实验表明,控制阈值决定了阈值耦合混沌神经元映射输出的时间周期特性,而张弛时间影响了输出的空间特性,阈值耦合混沌神经元映射输出表现出很好的聚类性.当张弛时间足够大时,阈值耦合混沌神经元映射输出实现时空完全同步.  相似文献   

7.
张胜海  沈柯 《中国物理》2002,11(9):894-899
We investigate chaotic synchronization in the generalized sense in unidirectionally coupled erbium-doped fibre dual-ring lasers. Numerical simulation shows that no matter whether the two different erbium-doped fibre dual-ring lasers are chaotic or not before coupling, they show generalized synchronization with a suitable unidirectional coupling coefficient under which the maximum condition Lyapunov exponent is negative. We also use the auxiliary system approach to detect the generalized synchronization.  相似文献   

8.
The mechanisms by which the individual functional unit (nephron) of the kidney regulates the incoming blood flow give rise to a number of nonlinear dynamic phenomena, including period-doubling bifurcations and intra-nephron synchronization between two different oscillatory modes. Interaction between the nephrons produces complicated and time-dependent inter-nephron synchronization patterns. In order to understand the processes by which a pair of vascular coupled nephrons synchronize, the paper presents a detailed analysis of the bifurcations that occur at the threshold of synchronization. We show that, besides infinite cascades of saddle-node bifurcations, these transitions involve mutually connected cascades of torus and homoclinic bifurcations. To illustrate the broader range of occurrence of this bifurcation structure for coupled period-doubling systems, we show that a similar structure arises in a system of two coupled, non-identical Ro?ssler oscillators.  相似文献   

9.
We propose a rationale for experimentally studying the intricate relationship between the rate of information transmission and synchronization level in active networks, applying theoretical results recently proposed. We consider two non-identical coupled Chua’s circuit with non-identical coupling strengths in order to illustrate the proceeding for experimental scenarios of very few data points coming from highly non-coherent coupled systems, such that phase synchronization can only be detected by methods that do not rely explicitely on the calculation of the phase. A relevant finding is to show that for the coupled Chua’s circuit, the larger the level of synchronization the larger the rate of information exchanged between both circuits. We further validate our findings with data from numerical simulations, and discuss an extension to arbitrarily large active networks.  相似文献   

10.
We study synchronization transitions and pattern formation on small-world networks consisting of Morris-Lecar excitable neurons in dependence on the information transmission delay and the rewiring probability. In addition, networks formed via gap junctional connections and coupling via chemical synapses are considered separately. For gap-junctionally coupled networks we show that short delays can induce zigzag fronts of excitations, whereas long delays can further detriment synchronization due to a dynamic clustering anti-phase synchronization transition. For the synaptically coupled networks, on the other hand, we find that the clustering anti-phase synchronization can appear as a direct consequence of the prolongation of information transmission delay, without being accompanied by zigzag excitatory fronts. Irrespective of the coupling type, however, we show that an appropriate small-world topology can always restore synchronized activity if only the information transmission delays are short or moderate at most. Long information transmission delays always evoke anti-phase synchronization and clustering, in which case the fine-tuning of the network topology fails to restore the synchronization of neuronal activity.  相似文献   

11.
The effect of noise on phase synchronization in small sets and larger populations of weakly coupled chaotic oscillators is explored. Both independent and correlated noise are found to enhance phase synchronization of two coupled chaotic oscillators below the synchronization threshold; this is in contrast to the behavior of two coupled periodic oscillators. This constructive effect of noise results from the interplay between noise and the locking features of unstable periodic orbits. We show that in a population of nonidentical chaotic oscillators, correlated noise enhances synchronization in the weak coupling region. The interplay between noise and weak coupling induces a collective motion in which the coherence is maximal at an optimal noise intensity. Both the noise-enhanced phase synchronization and the coherence resonance numerically observed in coupled chaotic R?ssler oscillators are verified experimentally with an array of chaotic electrochemical oscillators.  相似文献   

12.
《Physics letters. A》2020,384(8):126176
Measure synchronization is a well-known phenomenon in coupled classical Hamiltonian systems over last two decades. Here, synchronization in a pair of coupled Harper systems is investigated both in classical and quantum contexts. It seems that the concept of measure synchronization is restricted in the classical limit as it involves with the phase space. We show the quantum counterpart of the synchronization in a pair of coupled quantum kicked Harper chains. In the quantum context, the coupling occurs between two spins chains via a time and site dependent potential. We use the average interaction energy between the participating systems as an order parameter in both the contexts to establish a connection between the classical and the quantum scenarios. Besides, we also study the entanglement between the chains and difference between the average bare energies in the quantum context. Interestingly, all such indicators suggest a connection between the MS transition in classical maps and a phase transition in quantum spin chains.  相似文献   

13.
We describe two experiments in which we investigate the synchronization of coupled periodic oscillators. Each experimental system consists of two identical coupled electronic periodic oscillators that display bursts of desynchronization events similar to those observed previously in coupled chaotic systems. We measure the degree of synchronization as a function of coupling strength. In the first experiment, high-quality synchronization is achieved for all coupling strengths above a critical value. In the second experiment, no high-quality synchronization is observed. We compare our results to the predictions of the several proposed criteria for synchronization. We find that none of the criteria accurately predict the range of coupling strengths over which high-quality synchronization is observed. (c) 2000 American Institute of Physics.  相似文献   

14.
This paper examines the robustness of isochronous synchronization in simple arrays of bidirectionally coupled systems. First, the achronal synchronization of two mutually chaotic circuits, which are coupled with delay, is analyzed. Next, a third chaotic circuit acting as a relay between the previous two circuits is introduced. We observe that, despite the delay in the coupling path, the outer dynamical systems show isochronous synchronization of their outputs, i.e., display the same dynamics at exactly the same moment. Finally, we give here the first experimental evidence that the central relaying system is not required to be of the same kind of its outer counterparts.  相似文献   

15.
We show the existence of phase synchronization in bi-directionally coupled deterministic chaotic ratchets. The coupled ratchets were simulated in their chaotic states. A transition from a regime where the phases rotate with different velocities to a synchronous state where the phase difference is bounded was observed as the coupling was increased. In addition, the region of synchronization in which the system is permanently phase locked was identified. In this regime, the transverse Lyapunov exponent corresponding to both phases remain positive. Our calculations show that the transition to a synchronized state occurs via a crisis transition to an attractor filling the whole phase space.  相似文献   

16.
In this paper,we study lag synchronization between two coupled networks and apply two types of control schemes,including the open-plus-closed-loop(OPCL) and adaptive controls.We then design the corresponding control algorithms according to the OPCL and adaptive feedback schemes.With the designed controllers,we obtain two theorems on the lag synchronization based on Lyapunov stability theory and Barbalat's lemma.Finally we provide numerical examples to show the effectiveness of the obtained controllers and see that the adaptive control is stronger than the OPCL control when realizing the lag synchronization between two coupled networks with different coupling structures.  相似文献   

17.
《Physics letters. A》2001,278(4):191-197
This Letter presents chaos synchronization of two identical Rossler and Chen systems by using active control. The proposed technique is applied to achieve chaos synchronization for the Rossler and Chen dynamical systems. We demonstrate that a coupled Rossler and Chen systems can be synchronized. Numerical simulations are used to show the effectiveness of the proposed control method.  相似文献   

18.
We show that isochronous synchronization between two delay-coupled oscillators can be achieved by relaying the dynamics via a third mediating element, which surprisingly lags behind the synchronized outer elements. The zero-lag synchronization thus obtained is robust over a considerable parameter range. We substantiate our claims with experimental and numerical evidence of such synchronization solutions in a chain of three coupled semiconductor lasers with long interelement coupling delays. The generality of the mechanism is validated in a neuronal model with the same coupling architecture. Thus, our results show that zero-lag synchronized chaotic dynamical states can occur over long distances through relaying, without restriction by the amount of delay.  相似文献   

19.
高心  虞厥邦 《中国物理》2005,14(8):1522-1525
近年来对分数阶系统的动力学研究得到了较为广泛的关注。本文研究了基于主-从耦合同步法的同步技术并实现了两个耦合的分数阶振荡器的混沌同步。仿真结果表明:在适当的耦合强度的调节下,该方法可实现两个耦合分数阶混沌振荡器的准确同步,且分数阶混沌振荡器的同步率明显慢于整数阶混沌振荡器的同步率;而耦合分数阶混沌振荡器在实现同步的过程中,随着阶数的提高,同步误差曲线变得平滑,这表明,系统阶数的提高改善了耦合混沌振荡器实现同步的平稳性。  相似文献   

20.
We analyze the effect of synchronization in networks of chemically coupled multi-time-scale (spiking-bursting) neurons on the process of information transmission within the network. Although, synchronization occurs first in the slow time-scale (burst) and then in the fast time-scale (spike), we show that information can be transmitted with low probability of errors in both time scales when the bursts become synchronized. Furthermore, we show that for networks of non-identical multi-time-scales neurons, complete synchronization is no longer possible, but instead burst phase synchronization. Our analysis shows that clusters of burst phase synchronized neurons are very likely to appear in a network for parameters far smaller than the ones for which the onset of burst phase synchronization in the whole network takes place.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号