首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A general concept of fast ignition by a hydrodynamic pulse is developed. The main statements of the concept are formulated having in mind the need to ignite the pre-compressed thermonuclear fuel of the inertial confinement fusion (ICF) target. Initially, combustion must be initiated inside the hydrodynamic flow during its action on the target. The conditions for propagating a self-sustaining thermonuclear-detonation wave from an igniter on the thermonuclear fuel of the ICF-target must be provided. For this, the deuterium–tritium (DT) igniter placed in the forward part of the hydrodynamic flow should not only be heated up to thermonuclear temperature, but also compressed to a density close to the density of the ICF-target fuel. It is shown that the detonation of the multilayer conical target (containing DT-ice and a heavy pusher) enables fast ignition of the ICF target fuel of 200–500 g/cm3 density at an implosion velocity of 300–500 km/s.  相似文献   

2.
We investigate the efficiency of inertial fusion target compression, where at the initial time moment the thermonuclear fuel is in a two-phase state and has the form of two adjacent layers — the external DT-liquid layer and the internal DT-ice layer. We study this problem for the fast ignition targets, where the ultimate final density of the thermonuclear matter is of a special importance. We take the simplest type of a fast ignition target, which corresponds to the technical justification of the HiPER Project aimed at demonstrating fast ignition at the compressing laser pulse energy ~100 kJ. Such a target presents a spherical DT-ice shell coated with a thin polymer film. We obtain the dependence of the final target density on the mass fraction of the DT-matter liquid phase and formulate the requirements on the admissible concentration of liquid phase if the decrease in the DT-fuel final density does not exceed 10%. We find the criterion for choosing the laser-pulse duration which provides the minimum decrease in the final density of the target containing DT-matter in the initial two-phase state.  相似文献   

3.
 使用简单的爆推模型估算爆推快点火过程及其结果。 首先由ns级主驱动激光直接驱动,形成中心低密度高温热斑,周围为高密度低温主燃料区, 两区压力平衡(等压模型);然后用ps级超短超强激光打入,产生超热电子,其能量在低温主燃料区沉积,主燃料区发生爆炸,一部分向外飞散,一部分向内压缩中心热斑。在这个爆推模型下,热斑体积压缩比为64,中子产率将有极大的提高,相应的中子产额和能量增益得到提高。离子温度因为主燃料区质量过大,提高不大。提高超热电子能量,或者减小低温主燃料区质量,离子温度将会显著提高。不同的初始离子温度对结果有很大影响,较低的初始温度下更容易得到较高的中子产率和产额。  相似文献   

4.
Review of Japanese fusion program and role of inertial fusion   总被引:1,自引:0,他引:1  
The high compression of 600 times liquid density and the recent fast heating of a compressed core to 1-keV temperature have provided proof-of-principle of the fast ignition concept, and these results have significantly contributed to approve first phase of the Fast Ignition Realization EXperiment (FIREX) project. The goal of FIREX-I is to demonstrate fast heating of a fusion fuel up to the ignition temperature of 5–10 keV. Although the fuel size of FIREX-I is too small to ignite, sufficient heating will provide the scientific viability of ignition-and-burn by increasing the laser energy thereby the fuel size. Based on the result of FIREX-I, the decision of the start of FIREX-II to achieve ignition-and-burn can be made. The FIREX program is under the collaboration of the Institute of Laser Engineering and the National Institute for Fusion Science.  相似文献   

5.
One-dimensional numerical calculations were performed to study the dependence of conditions for initiating thermonuclear combustion and of the target gain of direct-ignition inertial fusion targets ignited by a short radiation pulse on the initial temperature of a preliminarily compressed fuel and the initial heat energy distribution between plasma electrons and ions in the ignition region (igniter). The igniter parameters at which an effective thermonuclear target explosion with a G ~ 103 target gain occurred were shown to substantially depend on the initial temperature of the major fuel fraction and the initial heat energy distribution between igniter electrons and ions. The heat energy of the igniter passed a minimum as the size of the igniter decreased. The dependences of these minimum energies on the temperature of the major fuel fraction at various initial energy distributions between igniter electrons and ions were determined. An increase in the temperature of the major fuel fraction was shown to decrease the target gain.  相似文献   

6.
It is shown that fast ignition can ensure the combustion of asymmetrically compressed targets for inertial confinement fusion with an efficiency close to the combustion of one-dimensionally compressed targets. This statement is valid not only for targets specially designed for fast ignition. Fast heating by an external energy source can ensure the ignition of a target designed for spark ignition, but where this ignition does not occur because inhomogeneities are formed in the temperature and density distributions owing to the development of hydrodynamic instabilities. The condition for ignition is the fast heating of the plasma in the combustion initiation region whose size is comparable with the sizes of compression inhomogeneities. Thus, fast ignition not only significantly reduces the ignition energy, but also is possibly a necessary stage in the inertial confinement fusion scheme when the spherically symmetric compression of a target requires very high engineering and financial expenses. The studies are based on the numerical simulation of the compression and combustion of inertial confinement fusion targets with one- and two-dimensional hydrodynamic codes.  相似文献   

7.
Temporal characteristics of the thermonuclear combustion wave, critical parameters of the igniter, and the total energy yield were computed using numerical modeling of the fast ignition of the spherically symmetric inertial confinement fusion (ICF) target of the reactor type taking into account different mechanisms of energy transfer from the central igniter to the main mass of fusionable fuel of the target. The program TERA was used for mathematical modeling. Along with complete calculations (including all known mechanisms of energy transfer), model computations with consecutive disengagement of energy transfer by thermonuclear charged particles (local energy deposition approximation) and by neutrons were also carried out. Our computations showed that the main effect consists in variation of the temporal characteristics of the combustion wave. Unlike the diagnostic-type targets, in the case of the reactor targets, energy transfer by neutrons exerts the main influence, and the second in importance is nonlocality of the energy deposition by charged thermonuclear particles.  相似文献   

8.
We have studied the dependence of the compression and burning of a spherical direct-drive fusion target on the nonuniformity of its heating caused by the asynchronous arrival of laser beams under conditions of irradiation by a modern laser system with a total energy of 2 MJ intended for the fuel ignition and fusion energy evolution equal to the absorbed laser energy. The investigation is performed by numerical simulation based on 2D hydrodynamic codes. It is established that the limiting permissible spread of the moments of laser pulse action on the target for ignition significantly exceeds the level that can be ensured using modern methods of controlled temporal synchronization of laser beams.  相似文献   

9.
Piloted ignition of solid fuels is investigated by simulating the transport and chemical reaction in a counter-flow arrangement where a known fuel (methane) is supplied through a porous burner and the power and the location of the igniter are varied. The porous burner arrangement simulates a pyrolyzing solid fuel at constant temperature by separating the gas phase from the solid conduction and pyrolysis phenomena. An Arrhenius one-step global reaction and a simplified transport model with Lewis number equal to one were used in the simulation. Only quasi-steady conditions are considered for the gas phase in this work because the response time for the solid phenomena is, in general, much larger than the response diffusion time for the gaseous phenomena. The relation of piloted ignition to extinction is also investigated. The effect of Damköhler number on ignition and extinction and the effect of the igniter on ignition are presented through a characteristic S curve obtained by plotting the evolving maximum temperature as a function of fuel mass flux. Based on the S-shaped curve (representing the maximum temperature in the system versus the mass flux of fuel), the relationship between the piloted ignition and extinction turning points and mass fluxes has been demonstrated in this paper. The piloted ignition turning point gradually approaches the extinction turning point with increasing Damköhler number and also with increasing power of the igniter. The ignition mass flux is found to depend basically on three parameters, Damköhler number, the location of the igniter and the power of the igniter all expressed in dimensionless forms.  相似文献   

10.
Direct-drive fusion targets are considered at present as an alternative to targets of indirect compression at a laser energy level of about 2 MJ. In this approach, the symmetry of compression and ignition of thermonuclear fuel play the major role. We report on the results of theoretical investigation of compression and burning of spherical direct-drive targets in the conditions of spatial nonuniformity of heating associated with a shift of the target from the beam center of focusing and possible laser radiation energy disbalance in the beams. The investigation involves numerous calculations based on a complex of 1D and 2D codes RAPID, SEND (for determining the target illumination and the dynamics of absorption), DIANA, and NUT (1D and multidimensional hydrodynamics of compression and burning of targets). The target under investigation had the form of a two-layer shell (ablator made of inertial material CH and DT ice) filled with DT gas. We have determined the range of admissible variation of compression and combustion parameters of the target depending on the variation of the spatial nonuniformity of its heating by a multibeam laser system. It has been shown that low-mode (long-wavelength) perturbations deteriorate the characteristics of the central region due to less effective conversion of the kinetic energy of the target shell into the internal energy of the center. Local initiation of burning is also observed in off-center regions of the target in the case of substantial asymmetry of irradiation. In this case, burning is not spread over the entire volume of the DT fuel as a rule, which considerably reduces the thermonuclear yield as compared to that in the case of spherical symmetry and central ignition.  相似文献   

11.
In the extreme conditions of high altitude, low temperature, low pressure, and high speed, the aircraft engine is prone to flameout and difficult to start secondary ignition, which makes reliable ignition of combustion chamber at high altitude become a worldwide problem. To solve this problem, a kind of multichannel plasma igniter with round cavity is proposed in this paper, the three-channel and five-channel igniters are compared with the traditional ones. The discharge energy of the three igniters was compared based on the electric energy test and the thermal energy test, and ignition experiments was conducted in the simulated high-altitude environment of the component combustion chamber. The results show that the recessed multichannel plasma igniter has higher discharge energy than the conventional spark igniter, which can increase the conversion efficiency of electric energy from 26% to 43%, and the conversion efficiency of thermal energy from 25% to73%. The recessed multichannel plasma igniter can achieve greater spark penetration depth and excitation area, which both increase with the increase of height. At the same height, the inlet flow helps to increase the penetration depth of the spark.The recessed multichannel plasma igniter can widen the lean ignition boundary, and the maximum enrichment percentage of lean ignition boundary can reach 31%.  相似文献   

12.
The plasma block (piston) with pressure P 1 is generated as a result of the nonlinear (ponderomotive) force in laser–plasma interaction. The plasma block can be used for the ignition of a fusion flame front in a solid density deuterium–tritium (DT) target by compressing the fuel that creates an ion shock propagating with velocity u ion? shock in the inside of a solid DT target. The ignition is achieved by creating an ion shock during the final stages of the implosion. We estimated the effect of an ion shock in solid DT target at an early stage with no compression and at the last stage with compression, where density increases by a factor of solid-state density. According to the theoretical model, a large target with a very thin layer of fuel (high-aspect ratio target) would be ideal to obtain the very strong shocks. Results indicate that the maximum compression even by an infinitely strong single shock can never produce more than four times the initial density of DT fuel. The results reported that the threshold ignition energy in a solid DT target is reduced by a factor of 4.  相似文献   

13.
王宬朕  董全力  刘苹  吴奕莹  盛政明  张杰 《物理学报》2017,66(11):115203-115203
直接驱动惯性约束聚变(ICF)的实现需要对靶丸进行严格的对称压缩,以达到自持热核反应(点火)所需的条件.快点火方案的应用降低了对靶丸压缩对称性以及驱动能量的要求,但压缩及核反应过程中良好的靶丸对称性无疑有助于核反应增益的提高.本文研究了快点火方案中高能电子注入高密等离子体后导致的各向异性电子的压强张量.这一现象存在于ICF快点火方案中的高能电子束"点火"及核反应阶段.鉴于高能电子加热离子过程以及靶丸核反应自持燃烧过程的时间较长,高密靶核会由于超高的各向异性压强的作用破坏高密靶丸的对称性,降低核燃料密度,进而降低了核燃料燃烧效率以及核反应增益.  相似文献   

14.
As the way of decreasing of the driver energy which is needed for ignition of the LCF targets, the conception of separation of the process of compression of the main mass of the fuel and the process of heating of the ignitor is suggested. Thermonuclear gain of the target with direct heating of the ignitor is calculated. It's shown that using the target with direct heating of the ignitor may lead to considerable decreasing of the driver energy: in (10–20) times for breakeven, and in (5–10) times for thermonuclear gain of 100–300 in comparison with the traditional conception of simultaneous compression and heating of the ICF target.  相似文献   

15.
快点火激光惯性约束聚变将压缩与点火过程分开,与中心点火方式相比,大大放宽了对压缩对称性和能量的要求,是国际惯性约束聚变研究的热点方向。在神光Ⅱ装置上开展的快点火锥壳靶预压缩实验中,背光分幅图像显示导引锥及输运丝对靶丸预压缩过程无明显影响,实验结果与一维数值模拟结果吻合也证明了该结论;实验中通过调节导引锥尺寸和相对靶丸的位置,可保证最大压缩时刻导引锥保存完好,这对超热电子的输运以及能量沉积是至关重要的。  相似文献   

16.
本文利用LARED-S程序模拟了等密度和等压力条件下压缩氘氚球的热核反应燃烧过程.对于等密度模型,模拟了两个具体算例,与国外计算结果进行了比较,验证了程序的可靠性.对于等压力模型,利用数值模拟给出了热核反应燃烧与压缩氘氚球初始状态之间的关系曲线,分析发现,氘氚装量、压力和主燃料密度的增加有利于提高热核反应放能和燃耗,中心热斑的温度和面密度分别达到70—80 MK和3—4 kg·m-2时热核反应才有显著的放能,提高主燃料密度,可以适当放宽对中心热斑的点火要求.最后对实际点火靶进行了数值模拟并且与等压力模拟计算结果进行了比较分析.  相似文献   

17.
压缩氘氚球的热核燃烧特性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
吴俊峰  叶文华  张维岩 《物理学报》2010,59(4):2381-2390
本文利用LARED-S程序模拟了等密度和等压力条件下压缩氘氚球的热核反应燃烧过程.对于等密度模型,模拟了两个具体算例,与国外计算结果进行了比较,验证了程序的可靠性.对于等压力模型,利用数值模拟给出了热核反应燃烧与压缩氘氚球初始状态之间的关系曲线,分析发现,氘氚装量、压力和主燃料密度的增加有利于提高热核反应放能和燃耗,中心热斑的温度和面密度分别达到70—80 MK和3—4 kg·m-2时热核反应才有显著的放能,提高主燃料密度,可以适当放宽对中心热斑的点火要求.最后对实际点火靶进行了数值模拟并且与等压力模拟计算结果进行了比较分析. 关键词: 压缩氘氚球 等密度模型 等压力模型 热核反应聚变  相似文献   

18.
One of the main concerns about the current working on nuclear power reactors is the potential hazard of their radioactive waste. There is hope that this issue will be reduced in next generation nuclear fusion power reactors. Reactors will release nuclear energy through microexplosions that occur in a mixture of hydrogen isotopes of deuterium and tritium. However, there exist radiological hazards due to the accumulation of tritium in the blanket layer. A catalytic fusion reaction of DT x mixture may stand between DD and an equimolar DT approach in which the fusion process continues with a small amount of tritium seed. In this paper, we investigate the possibility of DTx reaction in the fast ignition (FI) scheme. The kinematic study of the main mechanism of the energy gain–loss term, which may disturb the ignition and burn process, was performed in FI and the optimum values of precompressed fuel and proton beam driver were derived. The recommended values of fuel parameters are: areal density ρ R ≥ 5g · cm?2 and initial tritium fraction x ≤ 0.025. For the proton beam, the corresponding optimum interval values are proton average energy 3 ≤ E p ≤ 10 MeV, pulse duration 5 ≤ t p ≤ 15 ps and power 5 ≤ W p ≤ 12 × 1022 (keV·cm3 · ps?1). It was proved that under the above conditions, a fast ignition DT x reaction stays in the catalytic regime.  相似文献   

19.
与中心点火相比,快点火将压缩和点火过程分开,大大放宽了对压缩对称性和驱动能量的要求。通过在神光Ⅱ激光装置上开展了快点火锥壳靶预压缩实验研究,利用X射线背光分幅照相方法观察到了清晰完整的快点火锥壳靶内爆压缩过程,并利用阿贝反演结合剩余烧蚀质量的方法得到了不同时刻燃料密度、面密度分布数据,当前实验条件下获得的最大压缩密度和面密度分别为30g/cm3和50mg/cm2;为解决金柱腔M带对导引锥的预热以及由此导致的燃料-锥体材料混合问题,提出了一种在锥体表面镀低Z材料的方法,实验和辐射流体数值模拟结果验证了该方法的有效性,该方法的成功解决了间接驱动快点火激光聚变的重要关键技术问题。  相似文献   

20.
袁强  魏晓峰  张小民  张鑫  赵军普  黄文会  胡东霞 《物理学报》2012,61(11):114206-114206
以冲击点火物理特性的研究为基础, 分析冲击点火对高功率激光驱动器的物理需求, 然后从总体层面概括给出基于现役装置(神光III等间接驱动中心点火高功率激光装置) 研究冲击点火面临的关键技术问题. 研究表明, 基于现役装置的冲击点火主要面临两个层面的问题, 首先是非均匀光路排布下实现均匀辐照的工程层面问题, 其次是在现役装置上高效实现冲击点火激光脉冲的激光技术层面问题. 通过研究 分别对两个层面的问题提出相应的解决思路, 为后续研究奠定基础.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号