首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The formation of the structure of titanium dioxide modified with silicon dioxide, which was introduced as tetraethyl orthosilicate, was studied. It was found that the formation of the nanocrystalline structure of TiO2 occurred upon the modification of titanium dioxide with silicon dioxide. This nanocrystalline structure of TiO2 was formed by highly dispersed anatase particles of size 6–10 nm stabilized by silicon oxide layers, which were formed upon the decomposition of tetraethyl orthosilicate. An increase in the modifier concentration resulted in a deceleration of the growth of anatase particles and an increase in the temperature of the phase transition of anatase to rutile. It was found that the anatase phase in the samples containing 5–15 wt % SiO2 was stable up to 1000°C. The stabilization of highly dispersed anatase particles facilitated the retention of the developed fine-pore structure of xerogels with a pore diameter of 4 nm up to 900°C.  相似文献   

2.
The formation of the structure of titanium dioxide containing 3–15 wt % CeO2 in a wide temperature range (300–850°C) has been investigated by X-ray powder diffraction, electron microscopy, and adsorption methods. Modification of titanium dioxide with cerium oxide causes the formation of nanostructured Ce-Ti-O compounds consisting of incoherently intergrown fine anatase crystallites. The crystallites are separated by interblock boundaries in which cerium ions are stabilized. The nanostructure formed in the Ce-TiO2 oxide system stabilizes the anatase phase, prevents the sintering of anatase particles at high temperatures, and allows modified anatase to retain a larger specific surface area and a higher porosity upon heat treatment than pure titanium dioxide does.  相似文献   

3.
The effect of the microstructure of titanium dioxide on the structure, thermal stability, and catalytic properties of supported CuO/TiO2 and CuO/(CeO2-TiO2) catalysts in CO oxidation was studied. The formation of a nanocrystalline structure was found in the CuO/TiO2 catalysts calcined at 500°C. This nanocrystalline structure consisted of aggregated fine anatase particles about 10 nm in size and interblock boundaries between them, in which Cu2+ ions were stabilized. Heat treatment of this catalyst at 700°C led to a change in its microstructure with the formation of fine CuO particles 2.5–3 nm in size, which were strongly bound to the surface of TiO2 (anatase) with a regular well-ordered crystal structure. In the CuO/(CeO2-TiO2) catalysts, the nanocrystalline structure of anatase was thermally more stable than in the CuO/TiO2 catalyst, and it persisted up to 700°C. The study of the catalytic properties of the resulting catalysts showed that the CuO/(CeO2-TiO2) catalysts with the nanocrystalline structure of anatase were characterized by the high-est activity in CO oxidation to CO2.  相似文献   

4.
Nanocrystalline titanium dioxide particles with anatase structure and high thermal stability have been synthesized using the basic sol-gel method. The particle size and morphology were refined under hydrothermal conditions in the presence of different concentrations of tetramethylammonium hydroxide (TMAH) at 210°C and 230°C. XRD and TEM analysis showed that the TiO2 particles obtained were homogeneous and monodispersive at low contents of TMAH. All intense peaks, clearly observed in the XRD patterns, were assigned to the anatase phase and no rutile phase was observed. At high contents of TMAH, nanoscale small (10–30 nm) and larger (>100 nm) TiO2 particles were one-pot synthesized. The nanocrystalline TiO2 particles synthesized by this method have good thermal stability. With the sintering temperature of up to 650°C, all the XRD peaks maintained good agreement with the anatase reference data.  相似文献   

5.
The influence of CeO2 addition on the formation of the microstructure, electronic state, and catalytic properties of Pd/TiO2 supported catalysts in CO oxidation were investigated. It was shown that, when Pd is supported on titanium dioxide modified with cerium dioxide, annealing at 500°C results in the formation of Pd/(CeO2-TiO2) catalysts with a nanocrystalline structure composed of incoherently intergrown fine anatase crystals and interblock boundaries in which palladium and cerium are stabilized. The higher catalytic activity of Pd/(CeO2-TiO2) catalysts compared to Pd/TiO2 catalysts is explained by the smaller size of Pd particles and the higher proportion of palladium in the Pdδ+ state.  相似文献   

6.
Precipitation of titanium dioxide layers from the gas phase in the reaction system containing titanium tetraisopropylate and oxygen at the total pressure 1 kPa is studied. It is shown that in the range of 300–500°C the precipitation proceeds in the kinetic regime and is accompanied by the formation of layers of monotonous thickness containing nanocrystalline phases of anatase and rutile. In the temperature range 300–350°C the activation energy value was 92.7 kJ mol?1, and at higher temperatures (up to 500°C) it decreased to 17.5 kJ mol?1. The increase in the precipitation temperature caused the increase in relative amount of rutile in the precipitated layers.  相似文献   

7.
The physicochemical properties of titania (anatase) prepared from hydrated titanium dioxide by centrifugal thermal activation (CTA) at 140–700°C were studied. It was found that the microstructure and the texture parameters of anatase prepared by the above method were considerably different from those of the samples prepared by the traditional thermal decomposition of titanium hydroxide. The conditions of centrifugal activation exerted a considerable effect on the structure and the texture parameters of the resulting anatase. The crystal structure of anatase prepared at a temperature lower than 650°C was imperfect, and it approached a regular structure only at a temperature of >650°C. At temperatures higher than 300°C, the samples of TiO2 prepared using CTA were characterized by higher specific surface areas, fine pore structures, and comparable mesopore volumes, as compared with the samples prepared by commonly used synthetic methods.  相似文献   

8.
A new efficient method for the synthesis of extended micro-and nano-sized crystals (whiskers, fibers) of titanium glycolate Ti(OCH2CH2O)2 has been suggested. The method implies the reaction of hydrated titanium dioxide with ethylene glycol on heating in air. Thermolysis of Ti(OCH2CH2O)2 in air gives titanium dioxide as anatase (400–500°C) and rutile (T > 700°C), the morphology of titanium glycolate crystals being inherited by the oxide. The pseudocrystals of the thermolysis product in an inert gas medium (T = 500–950°C) represent aglomeration of nano-sized titanium dioxide particles and amorphous carbon. At temperatures up to 1300°C, the formation of the TiO2?x C x phase with a rutile structure is probable. In a wet air environment, titanium glycolate is partially hydrolyzed to give TiO x (OCH2CH2O)2?2x (OH)2x ·xH2O (0 ≤ x ≤ 1) and on keeping in water at room temperature, ethylene glycol is completely displaced from the crystals. This process is also not accompanied by changes in the particle morphology.  相似文献   

9.
Phase composition and structure of mesostructured materials, titanium dioxide and titanium dioxide modified with silver nanoparticles, have been studied by X-ray diffraction analysis. Introduction of Ag(I) ions into the initial composition and variation of the annealing temperature over the 500–950°C range allows controlling the anatase to rutile crystal phase ratio in the samples. The photocatalytic activity of TiO2 and TiO2/Ag samples has been demonstrated using the methyl orange degradation reaction. The catalytic properties of the materials have been found to depend on the anatase to rutile phase ratio and on the presence of silver nanoparticles.  相似文献   

10.
Titanium dioxide (TiO2) aerogels were prepared with sol–gel ambient pressure drying method by using titanium tetrachloride (TiCl4) as precursor and tetraethoxysilane as modifier, calcinated at different temperature and characterized by X‐ray diffraction, transmission electron microscopy and small angle X‐ray scattering. The results showed that the TiO2 aerogels remained amorphous under 500 °C, changed to anatase from 600 °C and further changed to rutile from 900 °C. Between 60 °C and 500 °C, the primary particles within the samples concentrated mainly upon small sizes, enlarged and diverged remarkably above 600 °C. The crystalline grains grew and agglomerated with the rise of the calcination temperature. The TiO2 aerogels at a temperature higher than 800 °C have better stability than anatase because of the formation of partial Ti―O―Si bonds. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
Synthesis of rutile pigments is based on solid state reaction and on Hedvall effect, i.e., phase transformation from anatase to rutile. Therefore, it is important to know the thermal behavior of these compounds (the temperature of this change). The goal was to prepare rutile pigments of type Ti1?3xCrxNb2xO2+x/2 by conventional solid state method from titanium dioxide TiO2 (AV-01, anatase), to determine an influence of composition (x = 0, 0.05, 0.10, 0.20, 0.30, 0.50) and calcination temperature (850; 900; 950; 1,000; 1,050; 1,100; 1,150 °C) on color properties of these compounds and to analyze other starting compounds of titanium (hydrated anatase paste TiO2·nH2O, titanyl sulfate dihydrate TiOSO4·2H2O (VKR 611), hydrated sodium titanium oxide paste Na2Ti4O9·nH2O) and their reaction mixtures for x = 0.05 by simultaneous TG–DTA analysis. According to the highest chroma C of color, the optimal conditions for synthesis of these pigments are concentration x = 0.05 and calcination temperature 1,050 °C and higher. It was observed that initial temperature 760–830 °C is needful for a formation of rutile structure. This temperature is the lowest for hydrated Na2Ti4O9 paste (760 °C) and similar for other starting compounds of titanium.  相似文献   

12.
A method was developed for the low-temperature sol–gel synthesis of one of the most popular components of functional and structural materials—nanostructured yttrium aluminum garnet Y3Al5O12—using precursors from the class of alkoxoacetylacetonates produced from the corresponding acetylacetonates. It was determined that increasing duration of heat treatment of yttrium-aluminum-containing xerogen in air to 6 h reduces the crystallization temperature of the Y3Al5O12 phase from 920–930 to 750–800°C, which was confirmed by IR spectroscopy and X-ray powder diffraction analysis. The microstructure of nanocrystalline yttrium aluminum garnet obtained at 800°С was studied; it was found that the size of crystallites is 30–40 nm, the size of particles is 30–50 nm, and the size of pores is 20–30 nm. Small-angle neutron scattering demonstrated that, in the powders synthesized at 700–800°C, there is structural ordering of the short-range type, whereas in the nanocrystalline samples heat-treated at a higher temperature (850°С), there is no such ordering.  相似文献   

13.
This paper reports the study of the preparation and structural characterization of nanocrystalline titanium dioxide (TiO2) fibers, which were prepared using sol–gel method with titanium tetrachloride (TiCl4) as the titanium source and acetylacetone as chelating agent to synthesize the poly-acetylacetonatotitanium (PAT) spinning solution, followed by centrifugal spinning and steam atmosphere heat-treatment. The molecule structure of the PAT was analyzed. Using the fourier transform infrared and 1H nuclear magnetic resonance spectrum. The microstructure of the TiO2 fibers was observed by using scanning electron microscope, which showed that the fibers’ diameters are in the range of 5–15 μm. The effects of the SiO2 doping were investigated by using high-resolution transmission electron microscope and X-ray diffractometer, and the conclusion is that SiO2 doping can efficiently inhibit the grain growth of TiO2 fibers and defer the phase transformation of anatase-to-rutile. In fact, the grain size is 33.2 nm for the un-doped TiO2 fibers heat-treated at 700 °C, while the grain size is only 7.6 nm for the TiO2 fibers doped with 15 wt% SiO2, which shows the possibility to obtain nano-crystalline anatase TiO2 fibers at higher heat-treatment temperature.  相似文献   

14.
The phase stability of the two TiO2 modifications (anatase and rutile) in fumed SiO2/TiO2 nano-composites (0–24.8 wt-% silica) under thermal and hydrothermal conditions was investigated by X-ray powder diffraction, transmission electron microscopy (TEM) and gas adsorption methods (BET). The results show that the phase transformation from anatase to rutile type of structure and the growth of anatase crystallites are significantly retarded by mixing small amounts of SiO2 into TiO2, while the specific surface area is maintained. The SiO2/TiO2-composites reveal a remarkable shift in the anatase to rutile transformation temperature from approx. 500 °C (pure TiO2) to approx. 1000 °C (samples with SiO2 contents of more than 10%). The rate of phase transformation from anatase to rutile is enhanced under hydrothermal conditions compared to conventional thermal treatment, e.g. pure titania (AEROXIDE® TiO2 P25) annealed under hydrothermal conditions (100 g/m3 absolute humidity, 4 h at 600 °C) had a rutile content of 85%, while the same specimens annealed in absence of humidity contained only 46% rutile. However, the difference in rate of phase transformation became less pronounced when the silica content in SiO2/TiO2-composites was further increased.TEM results showed that the surface of the anatase crystallites was covered with silica. This averts coalescence of anatase crystallites and keeps them under a critical size during the annealing process. When the crystal domains grew larger, a rapid conversion to rutile took place. The critical size of anatase crystallites for the phase transformation was estimated to be 15–20 nm.  相似文献   

15.
The conditions of the structure formation of rutile titanium dioxide from titanium dioxide (anatase) and titanium hydroxide isolated by thermolysis from the titanium compound (NH4)2TiO(SO4)2 · H2O and by thermal hydrolysis of a titanium sulfate(IV) solution, respectively, were studied. It was shown that the mechanical activation of the studied powders causes, in addition to a decrease in the initial grain size, deep destructuring with the formation of the transition phase, which, in the process of the subsequent high-temperature treatment, functions as a matrix for the formation of rutile. The research results will be used for the development of a new variant of the technology for the synthesis of titanium dioxide, which is an important component of compositions for polymeric materials—in particular, the K-300-61 and K-153 adhesives.  相似文献   

16.
The effect of the conditions of thermal treatment on the texture formation in molybdenum–titanium oxide (Mo–Ti–O) and vanadium–molybdenum–titanium oxide (V–Mo–Ti–O) catalysts was studied. It was found that the presence of MoO3 in the Mo–Ti–O catalyst resulted in the stabilization of the surface area of anatase and in the retention of the fine pore structure upon thermal treatment because of the insertion of highly dispersed molybdenum crystallites into the aggregates of anatase crystallites, preventing from their agglomeration over a wide range of temperatures. In the presence of MoO3 and V2O5 in the catalyst, anatase particles underwent agglomeration as the temperature was increased. This resulted in a more drastic decrease in the specific surface area and an increase in the pore size, as compared with binary samples, because of the formation of a thermally labile vanadium–molybdenum compound at the surface of anatase.  相似文献   

17.
An analysis of the effects of dopants concentration and different starting titanium compounds on the anatase to rutile phase transformation at the synthesis of rutile pigments Ti1?3xCrxNb2xO2±δ is presented in this study. The main goal was to analyze reaction mixtures for x = 0.05 (previous study) and 0.30 by simultaneous TG–DTA analysis and to determine the temperature of anatase–rutile transition. For x = 0.05, initial temperatures 760–830 °C are needful for a formation of rutile structure. The temperature is the lowest for the hydrated Na2Ti4O9 paste (760 °C) and similar for other starting compounds of titanium. But for x = 0.30, the anatase–rutile transition begins at higher temperatures 910–1,030 °C because of high-Nb content, which is the inhibitor of this modification change. In addition, we found the influence of calcination temperatures (850, 900, 950, 1000, 1050, 1100, and 1150 °C) on color properties and particle size distribution of these materials prepared from anatase TiO2 and with x = 0.30. Selected pigments were also analyzed by X-ray powder diffraction.  相似文献   

18.
Formation of nanocrystalline yttrium orthoferrite of ~30 nm average crystallite size from coprecipitated iron(III) and yttrium hydroxides was studied by thermo-X-ray diffractometry and simultaneous thermal analysis over 25–900°C temperature range. A mechanism of physicochemical transformations leading to the formation of YFeO3 nanoparticles was suggested.  相似文献   

19.
Well‐ordered TiO2 nanotubes were prepared by the electrochemical anodization of titanium in an ethylene glycol electrolyte containing 1 wt% NH4F and 10 wt% H2O at 20 V for 20 min, followed by annealing. The surface morphology and crystal structure of the samples were examined as a function of the annealing temperature by field emission scanning electron microscopy (FE‐SEM) and X‐ray diffraction (XRD), respectively. Crystallization of the nanotubes to the anatase phase occurred at 450 °C, while rutile formation was observed at 600 °C. Disintegration of the nanotubes was observed at 600 °C and the structure vanished completely at 750 °C. Electrochemical corrosion studies showed that the annealed nanotubes exhibited higher corrosion resistance than the as‐formed nanotubes. The growth of hydroxyapatite on the different TiO2 nanotubes was also investigated by soaking them in simulated body fluid (SBF). The results indicated that the tubes annealed to a mixture of anatase and rutile was clearly more efficient than that in their amorphous or plain anatase state. The in vitro cell response in terms of cell morphology and proliferation was evaluated using osteoblast cells. The highest cell activity was observed on the TiO2 nanotubes annealed at 600 °C. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Summary.  A complete characterization of nanostructures has to deal both with electronic structure and dimensions. Here we present the characterization of TiO2 nanoparticles of controlled size prepared by aerosol methods. The electronic structure of these nanoparticles was probed by X-ray absorption spectroscopy (XAS), the particle size by atomic force microscopy (AFM). XAS spectra show that the particles crystallize in the anatase phase upon heating at 500°C, whereas further annealing at 700°C give crystallites of 70% anatase and 30% rutile phases. Raising the temperature to 900°C results in a complete transformation of the particles to rutile. AFM images reveal that the mean size of the anatase particles formed upon heating at 500°C is 30 nm, whereas for the rutile particles formed upon annealing at 900°C 90 nm were found. The results obtained by these techniques agree with XRD data. Received October 5, 2001. Accepted (revised) December 6, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号