首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The photoisomerization mechanism of the neutral form of the photoactive yellow protein (PYP) chromophore is investigated using ab initio quantum chemistry and first-principles nonadiabatic molecular dynamics (ab initio multiple spawning or AIMS). We identify the nature of the two lowest-lying excited states, characterize the short-time behavior of molecules excited directly to S2, and explain the origin of the experimentally observed wavelength-dependent photoisomerization quantum yield.  相似文献   

2.
The photoactive yellow protein (PYP) acts as a light sensor to its bacterial host: it responds to light by changing shape. After excitation by blue light, PYP undergoes several transformations, to partially unfold into its signaling state. One of the crucial steps in this photocycle is the protonation of p-coumaric acid after excitation and isomerization of this chromophore. Experimentalists still debate on the nature of the proton donor and on whether it donates the hydrogen directly or indirectly. To obtain better knowledge of the mechanism, we studied this proton transfer using Car-Parrinello molecular dynamics, classical molecular dynamics, and computer simulations combining these two methods (quantum mechanics/molecular mechanics, QMMM). The simulations reproduce the chromophore structure and hydrogen-bond network of the protein measured by X-ray crystallography and NMR. When the chromophore is protonated, it leaves the assumed proton donor, glutamic acid 46, with a negative charge in a hydrophobic environment. We show that the stabilization of this charge is a very important factor in the mechanism of protonation. Protonation frequently occurs in simplified ab initio simulations of the chromophore binding pocket in vacuum, where amino acids can easily hydrogen bond to Glu46. When the complete protein environment is incorporated in a QMMM simulation on the complete protein, no proton transfer is observed within 14 ps. The hydrogen-bond rearrangements in this time span are not sufficient to stabilize the new protonation state. Force field molecular dynamics simulations on a much longer time scale have shown which internal rearrangements of the protein are needed. Combining these simulations with more QMMM calculations enabled us to check the stability of protonation states and clarify the initial requirements for the proton transfer in PYP.  相似文献   

3.
The photoisomerization of trans-p-coumaric acid (trans-CA) triggers a photocycle in photoactive yellow protein that ultimately mediates a phototactic response to blue light in certain purple bacteria. We have used fluorescence excitation and dispersed emission methods in a supersonic jet to investigate the nature of the electronic excited states involved in the initial photoexcitation and subsequent photoisomerization of trans-CA. We observed three distinct regions in the fluorescence excitation spectrum of trans-CA. Region I is characterized by sharp features that upon excitation exhibit trans-CA S(1) emission. In region II, features increase in width and decrease in intensity with increasing excitation energy. Upon excitation, we observed dual emission from the S(1) state of trans-CA and what may be the S(1) state of cis-CA. The onset of dual emission corresponds to an isomerization barrier of about 3.4 kcal/mol. Finally, the extremely broad absorption feature in region III is excitation to the S(2) electronic excited state and excitation results in trans-CA S(1) emission. Furthermore, we collected CA from the molecular beam after laser excitation in each of the three regions as further evidence of the photoisomerization process. The relative amounts of trans- and cis-CA in the collected molecules were measured with high-pressure liquid chromatography. Although trans-CA was excited in all three regions, a significant cis-CA peak appeared only in region II, though a small cis peak was observed in region III.  相似文献   

4.
We investigate solvent viscosity and polarity effects on the photoisomerization of the protonated and deprotonated forms of two analogues of the photoactive yellow protein (PYP) chromophore. These are trans-p-hydroxybenzylidene acetone and trans-p-hydroxyphenyl cinnamate, studied in solutions of different polarity and viscosity at room temperature, by means of femtosecond fluorescence up-conversion. The fluorescence lifetimes of the protonated forms are found to be barely sensitive to solvent viscosity, and to increase with increasing solvent polarity. In contrast, the fluorescence decays of the deprotonated forms are significantly slowed down in viscous media and accelerated in polar solvents. These results elucidate the dramatic influence of the protonation state of the PYP chromophore analogues on their photoinduced dynamics. The viscosity and polarity effects are, respectively, interpreted in terms of different isomerization coordinates and charge redistribution in S(1). A trans-to-cis isomerization mechanism involving mainly the ethylenic double-bond torsion and/or solvation is proposed for the anionic forms, whereas "concerted" intramolecular motions are proposed for the neutral forms.  相似文献   

5.
Photoactive yellow protein (PYP) is a bacterial photoreceptor containing a 4-hydroxycinnamyl chromophore. We report the Raman spectra for the dark state of PYP whose chromophore is isotopically labeled with 13C at the carbonyl carbon atom or at the ring carbon atoms. Spectra have been also measured with PYP in D2O where the exchangeable protons are deuterated. Most of the observed Raman bands are assigned on the basis of the observed isotope shifts and normal mode calculations using a density functional theory. We discuss the implication for the analysis of the infrared spectra of PYP. The comprehensive assignment provides a satisfactory framework for future investigations of the photocycle mechanism in PYP by vibrational spectroscopy.  相似文献   

6.
7.
The photoactive yellow protein (PYP) is the photoreceptor protein responsible for initiating the blue-light repellent response of the Halorhodospira halophila bacterium. Optical excitation of the intrinsic chromophore in PYP, p-coumaric acid, leads to the initiation of a photocycle that comprises several distinct intermediates. The dynamical processes responsible for the initiation of the PYP photocycle have been explored with several time-resolved techniques, which include ultrafast electronic and vibrational spectroscopies. Ultrafast electronic spectroscopies, such as pump-visible probe, pump-dump-visible probe, and fluorescence upconversion, are useful in identifying the timescales and connectivity of the transient intermediates, while ultrafast vibrational spectroscopies link these intermediates to dynamic structures. Herein, we present the use of these techniques for exploring the initial dynamics of PYP, and show how these techniques provide the basis for understanding the complex relationship between protein and chromophore, which ultimately results in biological function.  相似文献   

8.
We have studied the photoinduced trans/cis isomerization of the protonated form of p-hydroxycinnamic thiophenyl ester, a model chromophore of the photoactive yellow protein (PYP), in crystalline phase, by both fluorescence and infrared spectroscopies. The conversion from trans to cis configuration is revealed by a shift of the fluorescence peak and by inspection of the infrared maker bands. The crystal packing apparently stabilizes the cis photoproduct, suggesting different environmental effects from the solvent molecules for this model chromophore in liquid solutions or from the amino acid residues for the PYP chromophore.  相似文献   

9.
We report a unique lambdamax shift of the absorption maximum of a photoactive yellow protein (PYP) analogue reconstituted with a fluorinated chromophore (F-PYP). The difference in lambdamax between the free chromophore and the protein was significantly larger than that with the native chromophore. We concluded that the unusual lambdamax shift is caused by the electronegative character of the fluorine atom and not by steric hindrance. This result suggests that formation of a hydrogen bond between the fluorine atom and one or more amino acid residues could neutralize its electron-withdrawing character. The properties of analogues of PYP with brominated and methylated chromophore could be explained as an effect of steric hindrance.  相似文献   

10.
The role of the array of aromatic amino acid side chains located close to the chromophore binding loop of photoactive yellow protein (PYP) was studied using the alanine-substitution mutagenesis. Phe92, Tyr94, Phe96 and Tyr98 were replaced with alanine (F92A, Y94A, F96A and Y98A, respectively), then these mutants were characterized by UV-visible absorption spectra, circular dichroism (CD) spectra, thermal stability and photocycle kinetics. Absorption maxima of F92A, Y94A, F96A and Y98A were 444, 442, 439 and 447 nm, respectively, different to wild type (WT) at 446 nm. Far-UV CD spectra of mutants other than F92A were different from WT, indicating that Tyr94, Phe96 and Tyr98 maintain the native secondary structure of PYP. Mid-point temperatures of thermal denaturation of F92A, Y94A and F96A, estimated by the CD signal at 222 nm, were 5-10 degrees C lower than WT. Time constants of the photocycle estimated by flash-induced absorbance change were 0.36 s for WT and 1.4 s for Y98A, however, 100, 30 and 3000 times slower than WT for F92A, Y94A and F96A, respectively. Tyr98 is located in the loop region, whereas Phe92, Tyr94 and Phe96 are incorporated in the beta4 strand, showing that aromatic amino acid residues in the beta-sheet regulate the absorption spectrum, thermal stability and photocycle of PYP. Aromatic rings of Phe92, Tyr94 and Phe96 lie nearly perpendicular to the aromatic ring of Phe75 or chromophore. Possible weak hydrogen bonds between the aromatic ring hydrogen and pi-electrons of these residues are discussed.  相似文献   

11.
Pump-dump fluorescence spectroscopy was performed for photoactive yellow protein (PYP) at room temperature. The effect of the dump pulse on the population of the potential energy surface of the electronic excited state was examined as depletion in the stationary fluorescence intensity. The dynamic behavior of the population in the electronic excited state was successfully probed in the various combinations of the pump-dump delay, the dump-pulse wavelength, the dump-pulse energy and the observation wavelength. The experimental results were compared with the results obtained by the femtosecond time-resolved fluorescence spectroscopy.  相似文献   

12.
Atomistic QM/MM simulations have been carried out on the complete photocycle of Photoactive Yellow Protein, a bacterial photoreceptor, in which blue light triggers isomerization of a covalently bound chromophore. The "chemical role" of the protein cavity in the control of the photoisomerization step has been elucidated. Isomerization is facilitated due to preferential electrostatic stabilization of the chromophore's excited state by the guanidium group of Arg52, located just above the negatively charged chromophore ring. In vacuo isomerization does not occur. Isomerization of the double bond is enhanced relative to isomerization of a single bond due to the steric interactions between the phenyl ring of the chromophore and the side chains of Arg52 and Phe62. In the isomerized configuration (ground-state cis), a proton transfer from Glu46 to the chromophore is far more probable than in the initial configuration (ground-state trans). It is this proton transfer that initiates the conformational changes within the protein, which are believed to lead to signaling.  相似文献   

13.
14.
We have studied the structural changes induced by optical excitation of the chromophore in wild-type photoactive yellow protein (PYP) in liquid solution with a combined approach of polarization-sensitive ultrafast infrared spectroscopy and density functional theory calculations. We identify the nuC8-C9 marker modes for solution phase PYP in the P and I0 states, from which we derive that the first intermediate state I0 that appears with a 3 ps time constant can be characterized to have a cis geometry. This is the first unequivocal demonstration that the formation of I0 correlates with the conversion from the trans to the cis state. For the P and I0 states we compare the experimentally measured vibrational band patterns and anisotropies with calculations and find that for both trans and cis configurations the planarity of the chromophore has a strong influence. The C7=C8-(C9=O)-S moiety of the chromophore in the dark P state has a trans geometry with the C=O group slightly tilted out-of-plane, in accordance with the earlier reported structure obtained in an X-ray diffraction study of PYP crystals. In the case of I0, experiment and theory are only in agreement when the C7=C8-(C9=O)-S moiety has a planar configuration. We find that the carboxylic side group of Glu46 that is hydrogen-bonded to the chromophore phenolate oxygen does not alter its orientation on going from the electronic ground P state, via the electronic excited P state to the intermediate I0 state, providing conclusive experimental evidence that the primary stages of PYP photoisomerization involve flipping of the enone thioester linkage without significant relocation of the phenolate moiety.  相似文献   

15.
The excited electronic states of the p-coumaric acid thio-ester chromophore of the Photoactive Yellow Protein (PYP) are characterized in view of identifying the key factors determining the chromophore's isomerisation. These factors include the anionic nature of the chromophore, the presence of sulfur (rather than oxygen or nitrogen) in the ester moiety, and the presence of a hydrogen-bonding environment stabilizing the phenolate moiety. Two twisted stationary S1 structures are identified, corresponding to a twist around the double bond conjugated with the aromatic ring, and the single bond adjacent to the ring, respectively. The latter structure is accessed directly by relaxation from the Franck–Condon (FC) geometry. These structures are shown to entail a substantial polarization effect (increasing charge separation when moving towards the twisted geometry). Further, an inversion of charge character is observed for the double-bond twisted minimum, which can be accounted for by the vicinity of an S1–S0 conical intersection. The S1–S0 gap at the minimum geometries depends in a sensitive fashion on the -carbonyl heteroatom. Based upon these observations for the intrinsic properties of the chromophore, we further address the effect of the Arg52 residue, which acts as a counter-ion in the native protein environment.  相似文献   

16.
We report a theoretical study on the optical properties of a small, water-soluble photosensory receptor, photoactive yellow protein (PYP). A hierarchical ab initio molecular orbital calculation accurately evaluated the optical absorption maximum of the wild-type, as well as the lambda(max) values of 12 mutants. Electronic excitation of the chromophore directly affects the electronic state of nearby atoms in the protein environment. This effect is explicitly considered in the present study. Furthermore, the spectral tuning mechanism of PYP was investigated at the atomic level. The static disorder of a protein molecule is intimately related to the complex nature of its energy landscape. By using molecular dynamics simulation and quantum mechanical structure optimization, we obtained multiple minimum energy conformations of PYP. The statistical distribution of electronic excitation energies of these minima was compared with the hole-burning experiment (Masciangioli, T. [2000] Photochem. Photobiol. 72, 639), a direct observation of the distribution of excitation energies.  相似文献   

17.
The excited-state dynamics of the DNA intercalator YO-PRO-1 and of three derivatives has been investigated in water and in DNA using ultrafast fluorescence spectroscopy. In the free form, the singly charged dyes exist both as monomers and as H-dimers, while the doubly charged dyes exist predominantly as monomers. Both forms are very weakly fluorescent: the monomers because of ultrafast nonradiative deactivation, with a time constant on the order of 3-4 ps, associated with large amplitude motion around the methine bridge, and the H-dimers because of excitonic interaction. Upon intercalation into DNA, large amplitude motion is inhibited, H-dimers are disrupted, and the molecules become highly fluorescent. The early fluorescence dynamics of these dyes in DNA exhibits substantial differences compared with that measured with their homodimeric YOYO analogues, which are ascribed to dissimilarities in their local environment. Finally, the decay of the fluorescence polarization anisotropy reveals ultrafast hopping of the excitation energy between the intercalated dyes. In one case, a marked change of the depolarization dynamics upon increasing the dye concentration is observed and explained in terms of a different binding mode.  相似文献   

18.
We show by way of physical organic reasoning that the currently known photochemical results of the chromophore of photoactive yellow protein (PYP) are consistent with that expected of a least volume-demanding process for an anchored, tethered chromophore. The primary photoreaction, interestingly, does not appear to involve a hula-twist process. However, the latter might be involved during subsequent transition of dark intermediates. Absorption data of intermediates obtained from a microsecond time-resolved spectroscopic study of three PYP mutants (E46Q, T50V and R52Q) are consistent with the above analyses.  相似文献   

19.
The excited-state dynamics of 5-fluorouracil in acetonitrile has been investigated by femtosecond fluorescence upconversion spectroscopy in combination with quantum chemistry TD-DFT calculations ((PCM/TD-PBE0). Experimentally, it was found that when going from water to acetonitrile solution the fluorescence decay of 5FU becomes much faster. The calculations show that this is related to the opening of an additional decay channel in acetonitrile solution since the dark n/pi* excited state becomes near degenerate with the bright pi/pi* state, forming a conical intersection close to the Franck-Condon region. In both solvents, a S1-S0 conical intersection, governed by the out-of-plane motion of the fluorine atom, is active, allowing an ultrafast internal conversion to the ground state.  相似文献   

20.
Selectively bridged model compounds related to the chromophore in photoactive yellow protein have been synthesized where the single bond adjacent to the benzene ring (bond 1) and where both bond 1 and the adjacent double bond (bond 2) are bridged. They were compared to the nonbridged reference compound regarding their photophysical properties using steady-state and time-resolved fluorescence at various temperatures. Quantum chemical calculations were additionally performed and showed that several conformers are populated in the ground state. The neutral model compounds show that the nonradiative deactivation channel is linked to both single- and double-bond twisting. The relative importance of single-bond twisting is increased for the corresponding deprotonated hydroxy compounds with an enhanced donor character. The simultaneous photochemical activity of both single and double bonds explains the ease of photochemical isomerization in the confined environment of the natural PYP protein and also of the primary step in the vision process in rhodopsin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号