首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The thallium derivative of a fluorinated, B-methylated, tris(pyrazolyl)borate ligand, [MeB(3-(CF3)Pz)3]-, has been synthesized via a two-step process using the corresponding pyrazole, Li[MeBH3], and thallium(I) acetate. Reaction of [MeB(3-(CF3)Pz)3]Tl with CuBr in the presence of ethylene leads to [MeB(3-(CF3)Pz)3]Cu(C2H4). It is a thermally stable solid. [MeB(3-(CF3)Pz)3]Cu(C2H4) reacts with [(Bn)2ATI]SnCl to yield [MeB(3-(CF3)Pz)3]Cu<--Sn(Cl)[(Bn)2ATI], featuring an unsupported Cu(I)-Sn(II) bond [2.4540(4) A].  相似文献   

2.
Silver pyrazolates [[3-(CF3)Pz]Ag]3, [[3-(CF3),5-(CH3)Pz]Ag]3, [[3-(CF3),5-(Ph)Pz]Ag]3, [[3-(CF3),5-(But)Pz]Ag]3, and [[3-(C3F7),5-(But)Pz]Ag]3 have been synthesized by treatment of the corresponding pyrazole with a slight molar excess of silver(I) oxide. This economical and convenient route gives silver pyrazolates in high (>80%) yields. X-ray crystal structures of [[3-(CF3),5-(CH3)Pz]Ag]3, [[3-(CF3),5-(But)Pz]Ag]3, and [[3-(C3F7),5-(But)Pz]Ag]3 show that these molecules have trinuclear structures with essentially planar to highly distorted Ag3N6 metallacycles. [[3-(CF3),5-(CH3)Pz]Ag]3 forms extended columns via intertrimer argentophilic contacts (the closest Ag...Ag separation between the neighboring trimers are 3.355 and 3.426 A). The trinuclear [[3-(CF3),5-(But)Pz]Ag]3 units crystallize in pairs, basically forming "dimers of trimers", with the six silver atom core of the adjacent trimers adopting a chair conformation. However, in these dimers of trimers, even the shortest intertrimer Ag...Ag distance (3.480 A) is slightly longer than the van der Waals contact of silver (3.44 A). [[3-(C3F7),5-(But)Pz]Ag]3, which has two bulky groups on each pyrazolyl ring, shows no close intertrimer Ag...Ag contacts (closest intertrimer Ag...Ag distance = 5.376 A). The Ag-N bond distances and the intratrimer Ag...Ag separations of the silver pyrazolates do not show much variation. However, their N-Ag-N angles are sensitive to the nature (especially, the size) of substituents on the pyrazolyl rings. The pi-acidic [[3,5-(CF3)2Pz]Ag]3 and [[3-(C3F7),5-(But)Pz]Ag]3 form adducts with the pi-base toluene. X-ray data show that they adopt extended columnar structures of the type [[Ag3]2.[toluene]]infinity and [[Ag3]'.[toluene]]infinity ([[3,5-(CF3)2Pz]Ag]3 = [Ag3],[[3-(C3F7),5-(But)Pz]Ag]3 = [Ag3]'), in which toluene interleaves and makes face-to-face contacts with [[3-(C3F7),5-(But)Pz]Ag]3 or dimers of [[3,5-(CF3)2Pz]Ag]3.  相似文献   

3.
Dias HV  Wu J  Wang X  Rangan K 《Inorganic chemistry》2007,46(6):1960-1962
Silver(I) ethylene adducts [PhB(3-(CF3)Pz)3]Ag(C2H4) and [MeB(3-(CF3)Pz)3]Ag(C2H4) have been synthesized using the corresponding lithium salts, AgOTf, and ethylene. X-ray data show that [PhB(3-(CF3)Pz)3]Ag(C2H4) has a planar three-coordinate silver center whereas [MeB(3-(CF3)Pz)3]Ag(C2H4) features a tetrahedral silver site. The ethylene-free {[PhB(3-(CF3)Pz)3]Ag}n adopts a helical structure with a hexagonal pore.  相似文献   

4.
Pulsed field gradient spin-echo (PGSE) NMR and cryoscopic measurements have been performed on a series of homogeneous metallocene polymerization catalyst ion-pairs to determine if aggregation is a significant phenomenon under typical polymerization conditions. Cryoscopic measurements on [(Me5Cp)2ZrMe]+[MeB(C6F5)3]- (1), [rac-Et(Indenyl)2ZrMe]+[MeB(C6F5)3]- (2), [(1,2-Me2Cp)2ZrCHTMS2]+[MeB(C6F5)3]- (3), [Me2Si(Me4Cp)(t-BuN)TiMe]+[MeB(C6F5)3]- (4), [Me2Si(Me4Cp)(t-BuN)ZrMe]+[MeB(C6F5)3]- (5), and [Me2C(Fluorenyl)(Cp)ZrMe]+[MeB(C6F5)3]- (6) were carried out in benzene in the 10-18 millimolal concentration range. PGSE measurements, using (p-tolyl)4Si as an internal standard, were also performed on catalyst ion-pairs 1, 4, 6, [(Me5Cp)2ThMe]+[B(C6F5)4]- (7), [(Me2SiCp2)ZrMe]+[MeB(C6F5)3]- (8), and [Cp2ZrMe]+[MeB(C6F5)3]- (9) in the 0.8-10.0 millimolar range. All results are consistent with a 1:1 ion-pair structural model and show little evidence for ion-quadruples or higher-order aggregates.  相似文献   

5.
The compound [HNMe2Ph][NpB(C6F5)3](Np =(CH3)3CCH2) reacts with dimethylzirconocenes to give active propylene polymerization catalysts which are significantly more active and give higher molecular weight polypropylene than do the catalysts obtained using B(C6F5)3; the [NpB(C6F5)3]- anion is for steric reasons more weakly coordinating than is [MeB(C6F5)3]-.  相似文献   

6.
Dias HV  Singh S 《Inorganic chemistry》2004,43(23):7396-7402
Sterically demanding triazapentadiene [N((C3F7)C(Dipp)N)2]H affords the isolation of thermally stable, two- and three-coordinate silver complexes. The free ligand [N((C3F7)C(Dipp)N)2]H has a W-shaped ligand backbone in the solid state.[N((C3F7)C(Dipp)N)2]H reacts with silver(I) oxide in acetonitrile leading to CH(3)CNAg [N((C3F7)C(Dipp)N)2]HIt features a two-coordinate silver center and a kappa(1)-coordinated triazapentadienyl ligand. This silver acetonitrile complex serves as an excellent precursor to obtain thermally stable, silver isocyanide t-BuNCAg [N((C3F7)C(Dipp)N)2]Hand silver phosphine [[N((C3F7)C(Dipp)N)2]HAgPPh(3) adducts. IR spectroscopic data for the silver(I) isocyanide t-BuNCAg [N((C3F7)C(Dipp)N)2]Hshows nu(CN) at 2219 cm(-)(1). The silver ion coordinates to the triazapentadienyl ligand via the central nitrogen atom. The silver PPh(3) adduct,[N((C3F7)C(Dipp)N)2]HAgPPh(3), was synthesized by treating CH3CNAg [N((C3F7)C(Dipp)N)2]Hwith PPh(3). It displays relatively large Ag-P coupling in the (31)P NMR spectrum. The triazapentadienyl ligand in[N((C3F7)C(Dipp)N)2]HAgPPh(3) acts as a chelating kappa(2)-donor. The Ag-P bond is relatively short (2.3487(10) A).  相似文献   

7.
Cu (I) and Ag (I) complexes of the fluorinated triazolate ligand [3,5-(C3F7)2Tz](-) have been synthesized using the corresponding metal(I) oxides and the triazole. They form pi-acid/base adducts with toluene, leading to [Tol][M3][Tol] ([Tol]=toluene; [M3]={[3,5-(C3F7)2Tz]Cu}3 or {[3,5-(C3F7)2Tz]Ag}3) type structures. Packing diagrams show the presence of extended chains of the type {[Tol][M3][Tol]}infinity, but the intertoluene ring distances are too long for significant pi-arene/pi-arene contacts. These copper and silver triazolates react with PPh3 (at a 1:1 metal ion/P molar ratio), leading to dinuclear {[3,5-(C3F7)2Tz]Cu(PPh3)}2 and {[3,5-(C3F7) 2Tz]Ag(PPh3)}2. They feature a six-membered Cu(mu-N-N) 2Cu or Ag(mu-N-N)2Ag core with a boat conformation.  相似文献   

8.
The reactivity of [rac-(C2H4(1-indenyl)2)Zr(n-butyl)][MeB(C6F5)3] (4), [rac-(C2H4(1-indenyl)2)Zr(sec-butyl)][MeB(C6F5)3] (5), and [rac-(C2H4(1-indenyl)2)Zr(polypropenyl)][MeB(C6F5)3] with propene, ethene, and hydrogen was studied by low-temperature (<-40 degrees C) 1H and 13C NMR spectroscopy in toluene solutions. In contrast with previous suggestions that 2 degrees zirconium alkyl species such as 5 are dormant sites, these measurements demonstrate reactivity of 2 degrees zirconium alkyls with propene and ethene comparable to the 1 degrees zirconium alkyl species 4 and [rac-(C2H4(1-indenyl)2)Zr(polypropenyl)][MeB(C6F5)3]. Because 2,1-insertion of propene is an infrequent event, these results preclude significant accumulation of catalyst in the form of 2 degrees zirconium alkyls for this metallocene and counterion. The reactivity of 5 with hydrogen is at least 2 orders of magnitude faster than other 1 degrees zirconium alkyls. Such high reactivity accounts for the puzzlingly high fraction of butyl end groups in prior hydrooligomerization studies and implies that catalyst responsivity to H2 as a molecular weight control agent correlates with the regioselectivity of the catalyst.  相似文献   

9.
The two ion pairs [(4,7-Me(2)indenyl)(2)ZrMe](+)[MeB(C(6)F(5))(3)](-) (1 b) and [(indenyl)(2)ZrMe](+) [MeB(C(6)F(5))(3)](-) (2 b) have been generated in situ by reaction of stoichiometric B(C(6)F(5))(3) with the corresponding dimethyl zirconocenes. It has been shown that molecular mechanics computations, guided by experimental (1)H/(1)H NOE correlations, can provide information on the conformers present in solution. The dynamics of the ion pairs has also been investigated, showing the occurrence of both the processes previously characterized for this class of compounds, namely the B(C(6)F(5))(3) migration between the two methyl groups and dissociation-recombination of the whole [MeB(C(6)F(5))(3)](-) anion, the latter process being much faster than the first one (about three order of magnitude). Moreover, it has been shown that in certain conditions intermolecular processes can occur, which mimic the above-mentioned dissociative exchanges. In particular, the presence of species containing loosely bound [MeB(C(6)F(5))(3)](-) anion fastens the exchange of this anion, while the presence of free B(C(6)F(5))(3) accelerates its exchange between the two methyl sites.  相似文献   

10.
Synthetic details, solid-state structures, and photophysical properties of a group of trimeric copper(I) complexes containing pyrazolate ligands are described. The reaction of copper(I) oxide and the fluorinated pyrazoles [3-(CF(3))Pz]H, [3-(CF(3)),5-(Me)Pz]H, and [3-(CF(3)),5-(Ph)Pz]H leads to the corresponding trinuclear copper(I) pyrazolates, {[3-(CF(3))Pz]Cu}(3), {[3-(CF(3)),5-(Me)Pz]Cu}(3), and {[3-(CF(3)),5-(Ph)Pz]Cu}(3), respectively, in high yield. The {[3,5-(i-Pr)(2)Pz]Cu}(3) compound was obtained by a reaction between [Cu(CH(3)CN)(4)][BF(4)], [3,5-(i-Pr)(2)Pz]H, and NEt(3). These compounds as well as {[3,5-(Me)(2)Pz]Cu}(3) and {[3,5-(CF(3))(2)Pz]Cu}(3) adopt trimeric structures with nine-membered Cu(3)N(6) metallacycles. There are varying degrees and types of intertrimer Cu...Cu interactions. These contacts give rise to zigzag chains in the fluorinated complexes, {[3-(CF(3))Pz]Cu}(3), {[3-(CF(3)),5-(Me)Pz]Cu}(3), {[3-(CF(3)),5-(Ph)Pz]Cu}(3), and {[3,5-(CF(3))(2)Pz]Cu}(3), whereas the nonfluorinated complexes, {[3,5-(Me)(2)Pz]Cu}(3) and {[3,5-(i-Pr)(2)Pz]Cu}(3) form dimers of trimers. Out of all the compounds examined in this study, {[3-(CF(3)),5-(Ph)Pz]Cu}(3) has the longest (3.848 Angstroms) and {[3,5-(Me)(2)Pz]Cu}(3) has the shortest (2.946 Angstroms) next-neighbor intertrimer Cu...Cu distance. The Cu...Cu separations within the trimer units do not vary significantly (typically 3.20-3.26 Angstroms). All of these trinuclear copper(I) pyrazolates show bright luminescence upon exposure to UV radiation. The luminescence bands are hugely red-shifted from the corresponding lowest-energy excitations, rather broad, and unstructured even at low temperatures, suggesting metal-centered emissions owing to intertrimer Cu...Cu interactions that are strengthened in the phosphorescent state. The {[3-(CF(3)),5-(Ph)Pz]Cu}(3) compound exhibits an additional highly structured phosphorescence with a vibronic structure corresponding to the pyrazolyl (Pz) ring. The luminescence properties of solids and solutions of the trimeric compounds in this study show fascinating trends with dramatic sensitivities to temperature, solvent, concentration, and excitation wavelengths.  相似文献   

11.
Molecular weights of {[3,5-(CF 3) 2Pz]Ag} 3, {[3-(C 3F 7),5-( t-Bu)Pz]Ag} 3, and {[3,5-( i-Pr) 2Pz]Ag} 3 at various solution concentrations have been investigated using vapor-pressure osmometry. Depending on the concentration, the trinuclear {[3,5-(CF 3) 2Pz]Ag} 3 either dissociates into mono- and dinuclear moieties or remains trinuclear or aggregates to hexanuclear species in toluene. In contrast, {[3-(C 3F 7),5-( t-Bu)Pz]Ag} 3, which has a bulky and relatively electron-rich pyrazolate, retains the trinuclear form even at low concentrations in toluene. Both {[3,5-(CF 3) 2Pz]Ag} 3 and {[3,5-( i-Pr) 2Pz]Ag} 3 adopt trinuclear structures in heptane at low concentrations. At higher concentrations, {[3,5-( i-Pr) 2Pz]Ag} 3 forms hexanuclear species. The aggregation-segregation points are rather sharp and are reminiscent of the all-or-none character of phase transitions. Remarkably, at higher concentrations, the aggregation states of these silver pyrazolates are similar to those expected based on solid-state data.  相似文献   

12.
Treatment of [HB(3,5-(CF3)2Pz)3]Na(THF) with CF3SO3Cu followed by 1-azidoadamantane affords [HB(3,5-(CF3)2Pz)3]CuNNN(1-Ad) in 65% yield. The solid state structure shows that the copper atom is coordinated to the terminal nitrogen atom (NT) of the azidoadamantane ligand. The related silver(I) adduct can be prepared in 80% yield by the treatment of [HB(3,5-(CF3)2Pz)3]Ag(THF) with 1-azidoadamantane. However, [HB(3,5-(CF3)2Pz)3]AgN(1-Ad)NN shows a different bonding mode where the silver atom coordinates to the alkylated nitrogen atom (NA) of the azidoadamantane ligand. Asymmetric stretching bands of the azido group for copper and silver adducts appear at 2143 and 2120 cm-1, respectively. Theoretical investigation shows that steric effects do not play a dominant role in determining the bonding mode of the azide ligand in these two metal complexes. Although the copper(I) ion affinity for the two coordinating sites NT and NA is nearly identical, copper-azide back-bonding interactions favor the copper-NT mode of bonding over the copper-NA mode. Silver (a very poor back-bonding metal) prefers the NA site for coordination. The NA site has a significantly higher proton affinity and slightly higher sodium ion affinity. Important structural parameters for [HB(3,5-(CF3)2Pz)3]CuNNN(1-Ad) and [HB(3,5-(CF3)2Pz)3]AgN(1-Ad)NN are as follows: Cu-NT 1.861(3) A, NT-N 1.136(4) A, N-NA 1.219(4) A, NT-N-NA 173.1(3) degrees; Ag-NA 2.220(5) A, NT-N 1.143(12) A, N-NA 1.227(10) A, NT-N-NA 176.8(12) degrees. Overall, the azidoadamantane ligand does not undergo any significant changes upon coordination to Cu(I) or Ag(I) ions.  相似文献   

13.
Dias HV  Jin W  Kim HJ  Lu HL 《Inorganic chemistry》1996,35(8):2317-2328
The fluorinated tris(pyrazolyl)borate ligands [HB(3,5-(CF(3))(2)Pz)(3)](-) and [HB(3-(CF(3))Pz)(3)](-) (where Pz = pyrazolyl) have been synthesized as their sodium salts from the corresponding pyrazoles and NaBH(4) in high yield. These sodium complexes and the related [HB(3,5-(CF(3))(2)Pz)(3)]K(DMAC) were used as ligand transfer agents in the preparation of the copper and silver complexes [HB(3,5-(CF(3))(2)Pz)(3)]Cu(DMAC), [HB(3,5-(CF(3))(2)Pz)(3)]CuPPh(3), [HB(3,5-(CF(3))(2)Pz)(3)]AgPPh(3), and [HB(3-(CF(3))Pz)(3)]AgPPh(3). Metal complexes of the fluorinated [HB(3,5-(CF(3))(2)Pz)(3)](-) ligand have highly electrophilic metal sites relative to their hydrocarbon analogs. This is evident from the formation of stable adducts with neutral oxygen donors such as H(2)O, dimethylacetamide, or thf. Furthermore, the metal compounds derived from fluorinated ligands show fairly long-range coupling between fluorines of the trifluoromethyl groups and the hydrogen, silver, or phosphorus. The solid state structures show that the fluorines are in close proximity to these nuclei, thus suggesting a possible through-space coupling mechanism. Crystal structures of the sodium adducts exhibit significant metal-fluorine interactions. The treatment of [HB(3,5-(CF(3))(2)Pz)(3)]Na(H(2)O) with Et(4)NBr led to [Et(4)N][HB(3,5-(CF(3))(2)Pz)(3)], which contains a well-separated [Et(4)N](+) cation and the [HB(3,5-(CF(3))(2)Pz)(3)](-) anion in the solid state. Crystal data with Mo Kalpha (lambda = 0.710 73 ?) at 193 K: [HB(3,5-(CF(3))(2)Pz)(3)]Na(H(2)O), C(15)H(6)BF(18)N(6)NaO, a = 7.992(2) ?, b = 15.049(2) ?, c = 9.934(2) ?, beta = 101.16(2) degrees, monoclinic, P2(1)/m, Z = 2; [{HB(3-(CF(3))Pz)(3)}Na(thf)](2), C(32)H(30)B(2)F(18)N(12)Na(2)O(2), a = 9.063(3) ?, b = 10.183(2) ?, c = 12.129(2) ?, alpha = 94.61(1) degrees, beta = 101.16(2) degrees, gamma = 95.66(2) degrees, triclinic, &Pmacr;1, Z = 1; [HB(3,5-(CF(3))(2)Pz)(3)]Cu(DMAC), C(19)H(13)BCuF(18)N(7)O, a = 15.124(4) ?, b = 8.833(2) ?, c = 21.637(6) ?, beta = 105.291(14) degrees, monoclinic, P2(1)/n, Z = 4; [HB(3,5-(CF(3))(2)Pz)(3)]CuPPh(3), C(33)H(19)BCuF(18)N(6)P, a = 9.1671(8) ?, b = 14.908(2) ?, c = 26.764(3) ?, beta = 94.891(1) degrees, monoclinic, P2(1)/c, Z = 4; [HB(3,5-(CF(3))(2)Pz)(3)]AgPPh(3).0.5C(6)H(14), C(36)H(26)AgBF(18)N(6)P, a = 13.929(2) ?, b = 16.498(2) ?, c = 18.752(2) ?, beta = 111.439(6) degrees, monoclinic, P2(1)/c, Z = 4; [Et(4)N][HB(3,5-(CF(3))(2)Pz)(3)], C(23)H(24)BF(18)N(7), a = 10.155(2) ?, b = 18.580(4) ?, c = 16.875(5) ?, beta = 99.01(2) degrees, monoclinic, P2(1)/n, Z = 4.  相似文献   

14.
Ayers AE  Dias HV 《Inorganic chemistry》2002,41(12):3259-3268
Syntheses of halide derivatives of germanium(II) and tin(II) aminotroponiminate (ATI) complexes and their silver salt metathesis reactions have been investigated. The treatment of GeCl(2) x (1,4-dioxane), SnCl(2), or SnI(2) with [(n-Pr)(2)ATI]Li in a 1:1 molar ratio affords the corresponding germanium(II) or tin(II) halide complex [(n-Pr)(2)ATI]MX (where [(n-Pr)(2)ATI](-) = N-(n-propyl)-2-(n-propylamino)troponiminate; M = Ge or Sn; X = Cl or I). As usually expected, [(n-Pr)(2)ATI]GeCl and [(n-Pr)(2)ATI]SnCl undergo rapid metathesis with CF(3)SO(3)Ag, leading to trifluoromethanesulfonate salts, [[(n-Pr)(2)ATI]Ge][SO(3)CF(3)] and [[(n-Pr)(2)ATI]Sn][SO(3)CF(3)], and silver chloride. However, when the silver source [HB(3,5-(CF(3))(2)Pz)(3)]Ag(eta(2)-toluene) is used, rather than undergoing metathesis, very stable 1:1 adducts [HB(3,5-(CF(3))(2)Pz)(3)]Ag<--Ge(Cl)[(n-Pr)(2)ATI] and [HB(3,5-(CF(3))(2)Pz)(3)]Ag<--Sn(Cl)[(n-Pr)(2)ATI] are formed (where [HB(3,5-(CF(3))(2)Pz)(3)](-) = hydrotris(3,5-bis(trifluoromethyl)pyrazolyl)borate). The use of the iodide derivative [(n-Pr)(2)ATI]SnI did not change the outcome either. All new compounds have been characterized by multinuclear NMR spectroscopy and X-ray crystallography. The Ag-Ge and Ag-Sn bond distances of [HB(3,5-(CF(3))(2)Pz)(3)]Ag<-- Ge(Cl)[(n-Pr)(2)ATI], [HB(3,5-(CF(3))(2)Pz)(3)]Ag<--Sn(Cl)[(n-Pr)(2)ATI], and [HB(3,5-(CF(3))(2)Pz)(3)]Ag<--Sn(I)[(n-Pr)(2)ATI] are 2.4142(6), 2.5863(6), and 2.5880(10) A, respectively. A convenient route to [(n-Pr)(2)ATI]H is also reported.  相似文献   

15.
Ten polymeric silver(I) double salts containing embedded acetylenediide: [(Ag2C2)2(AgCF3CO2)9(L1)3] (1), [(Ag2C2)2(AgCF3CO2)10(L2)3]H2O (2), [(Ag2C2)(AgCF3CO2)4(L3)(H2O)]0.75 H2O (3), [(Ag2C2)(1.5)(AgCF3CO2)7(L4)2] (4), [(Ag2C2)(AgCF3CO2)7(L5)2(H2O)] (5), [(Ag2C2) (AgC2F5CO2)7(L1)3(H2O)] (6), [(Ag2C2)(AgCF3CO2)7(L1)3(H2O)]2 H2O (7), [(Ag2C2)(AgC2F5CO2)6(L3)2] (8), [(Ag2C2)2(AgC2F5CO2)12(L4)2(H2O)4]H2O (9), and [(Ag2C2)(AgCF3CO2)6(L3)2(H2O)]H2O (10) have been isolated by varying the types of betaines, the perfluorocarboxylate ligands employed, and the reaction conditions. Single-crystal X-ray analysis has shown that 1-4 all have a columnar structure composed of fused silver(I) double cages, with C2(2-) species embedded in its stem and an exterior coat comprising anionic and zwitterionic carboxylates. For 5 and 6, single silver(I) cages are linked into a beaded chain through both types of carboxylate ligands. In 7, two different coordination modes of L1 connect the silver(I) polyhedra into a chain. For 8, the mu(2)-O,O' coordination mode of L3 connects the silver(I) double cages into a chain. Compound 9 exhibits a two-dimensional architecture generated from the cross-linkage of double cages by C2F5CO2-, L4, and [Ag2(C2F5CO2)2] units. Similar to 9, 10 is also a two-dimensional structure, which is formed by connecting the chains of linked double cages through [Ag2(CF3CO2)2] bridging.  相似文献   

16.
Trinuclear copper(I) and silver(I) pyrazolates {[3,5-(CF3)2Pz]M}3 (M = Cu and Ag) react with pyridazine to give neutral, tetranuclear metallacycles with a para-cyclophane core whereas benzo[c]cinnoline fails to break the cyclic pyrazolate trimers under similar conditions, and affords a metalla-propellane featuring both two- and three-coordinate metal sites.  相似文献   

17.
Dias HV  Singh S  Flores JA 《Inorganic chemistry》2006,45(22):8859-8861
Fully fluorinated triazapentadienyl ligand [N{(C3F7)C(C6F5)N}2]- and the related [N{(C3F7)C(2-F,6-(CF3)C6H3)N}2]- have been synthesized in good yield via a convenient route and used in the isolation of three- and four-coordinate copper(I)-carbon monoxide complexes. They show fairly high nu(CO) values (>2100 cm(-1)), indicating the presence of electron-poor Cu sites. The copper(I)-ethylene adduct [N{(C3F7)C(C6F5)N}2]Cu(C2H4), featuring a three-coordinate Cu site, has also been synthesized using [N{(C3F7)C(C6F5)N}2]CuNCCH3 and C2H4.  相似文献   

18.
The successive addition of KCN and Ph3CCl to B(C6F4-C6F5-2)3 (PBB) affords triphenylmethyl salts of the [NC-PBB]- anion. By contrast, the analogous reaction with sodium dicyanamide followed by treatment with Ph(3)CCl leads to the zwitterionic aminoborane H2NB(C12F9)2C12F8, via nucleophilic attack on an o-F atom, together with CPh3[F-PBB]. Whereas treatment of [NC-PBB]- with either PBB or B(C6F5)3 fails to give isolable cyano-bridged diborates, the reaction of Me3SiNC-B(C6F5)3 with PBB in the presence of Ph3CCl affords [Ph3C][PBB-NC-B(C6F5)3]. Due to steric hindrance this anion is prone to borane dissociation. The longer linking group N(CN)2- gives the very voluminous anions [N[CNB(C6F5)3]2]- and [N(CN-PBB)2]-. A comparison of propylene polymerisations with rac-Me2Si(Ind)2ZrMe2 activated with the various boranes or trityl borates gives an anion-dependent activity sequence, in the order [NC-PBB]- < [MeB(C6F5)3]- < [MePBB]- approximately [PBB-NCB(C6F5)3]- approximately [N[CNB(C6F5)3]2]- < [F-PBB]-< [B(C6F5)4]- < [N(CN-PBB)2]-. The anion [N(CN-PBB)2]- gives a catalyst productivity about 2500 times higher than that of [NC-PBB]- and exceeds that of [B(C6F5)4]- based catalysts. The van der Waals volumes and surface areas of the anions have been calculated and provide a rationale for the observed reactivity trends in polymerisation reactions.  相似文献   

19.
Treatment of the five-coordinate ferrous dialkyl complex, (iPrPDI)Fe(CH2SiMe3)2 (iPrPDI = ((2,6-CHMe2)2C6H3N=CMe)2C5H3N), with [PhMe2NH][BPh4] in the presence of diethyl ether or tetrahydrofuran furnished the corresponding alkyl cations, where the donor ligand is coordinated in the basal plane of a distorted square pyramidal iron(II) alkyl cation. Performing the same reaction with the neutral Lewis acid, B(C6F5)3, induced methide abstraction from a silicon atom followed by rearrangement to afford the base free ferrous alkyl cation, [(iPrPDI)Fe(CH2SiMe2CH2SiMe3)][MeB(C6F5)3]. This complex is active for the polymerization of ethylene and yields polymers that are of higher molecular weight and narrower polydispersity than traditional methylalumoxane-activated catalysts.  相似文献   

20.
The first 5-substituted trihydro(azolyl)borate system, the sodium trihydro(5-CF3-pyrazol-1-yl)borate, Na[H3B(5-(CF3)pz)], has been synthesized by the reaction of 3-trifuoromethyl-pyrazole with NaBH4 in high yield. Na[H3B(5-(CF3)pz)] reacts with AgNO3 in the presence of monodentate tertiary phosphanes PR3 (PR3=P(C6H5)3, P(p-C6H4CH3)3, P(m-C6H4CH3)3, P(o-C6H4CH3)3, or PCH3(C6H5)2) to afford silver(I) bis(phosphane) adducts. These compounds have been characterized by elemental analyses, FTIR, ESI-MS, and multinuclear (1H, 19F, and 31P) NMR spectroscopy. Solid-state structures of {[H3B(5-(CF3)pz)]Ag[P(C6H5)3]2} and {[H3B(5-(CF3)pz)]Ag[P(p-C6H4CH3)3]2} are also reported. They feature kappa2-N,H-bonded trihydro(pyrazolyl)borate ligands and pseudo-tetrahedral silver atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号