首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of beads bearing bioactive molecules to develop generic biochips based on chemi- and electro-chemiluminescent detection was evaluated. The biochips were composed of arrayed biosensors, including enzyme-charged beads, antigen-charged beads, or oligonucleotide-charged beads, entrapped in poly(vinyl alcohol) (PVA-SbQ) photopolymer. In each case the sensing layers were spotted at the surface of a glassy carbon electrode as 0.3 µL drops, generating 500–800 µm spots. The luminescent reactions were either catalysed by horseradish peroxidase or triggered by application of a +850 mV potential between the glassy carbon electrode and a platinum pseudo-reference. Enzyme biochips were designed for the concomitant detection of choline, glucose, glutamate, lactate, lysine, and urate, based on the corresponding oxidase-charged beads and the electro-chemiluminescent (ECL) reaction with luminol-immobilised beads of the hydrogen peroxide produced. Limits of detection of 1 µmol L–1 for glutamate, lysine and uric acid, 20 µmol L–1 for glucose, and 2 µmol L–1 for choline and lactate were found with detection ranging over three decades at least. Use of the electro-chemiluminescent biochip was extended to a tri-enzymatic sensing layer based on kinase-oxidase activity for detection of acetate. A reaction sequence using acetate kinase, pyruvate kinase, and pyruvate oxidase enabled the production of H2O2 in response to acetate injection in the range 10 µmol L–1 to 100 mmol L–1. Based on IgG-bearing beads, a chemiluminescent immuno-biochip has been also realised for the model detection of human IgG. Biotin-labelled anti-human IgG were used in a competitive assay, in conjunction with peroxidase-labelled streptavidin. Free antigen could then be detected with a detection limit of 25 pg (108 molecules) and up to 15 ng. In a similar way, the use of oligonucleotide-immobilised beads enabled the realisation of DNA-sensitive biochips which could be used to detect a biotin-labelled sequence al a level of 5×108 molecules.  相似文献   

2.
A reliable and reproducible method, capillary zone electrophoresis with amperometric detection (CZE–AD), has been developed for separation and quantification of levodopa methyl ester (LDME) and its biotransformation products levodopa (L-DOPA) and dopamine (DA) in rat serum. A carbon-disk electrode was used as working electrode. The optimum conditions for CZE detection were 50 mmol L–1 phosphate solution at pH 7.0 as running buffer, 17 kV as separation voltage, 1.0 V (vs Ag/AgCl, 3.0 mol L–1) as detection potential, and sample injection for 8 s at 17 kV. The linear ranges were from 2.4×10–2 to 2.2 g mL–1 for LDME, 2.9×10–1 to 49.5 g mL–1 for L-DOPA, and 1.4×10–2 to 1.5 g mL–1 for DA with correlation coefficients of 0.9997, 0.9994, and 0.9999, respectively. The detection limits for LDME, L-DOPA, and DA were 14.6, 98.0, and 9.7 ng mL–1, respectively. Recoveries were 80.3% for LDME, 93.5% for L-DOPA, and 86.5% for DA. This method was applied to serum samples after intravenous injection of LDME and L-DOPA to rats.  相似文献   

3.
A flow injection method is proposed for the determination of naftopidil based upon the oxidation by potassium permanganate in a sulfuric acid medium and sensitized by formaldehyde and formic acid. The optimum chemical conditions for the chemiluminescence emission were 0.25 mM potassium permanganate and 4.0 M sulfuric acid. Two manifolds were tested and instrumental parameters such as the length of the reactor, injection volume and flow rate were compared. When using the selected manifold in the presence of 0.4 M formaldehyde, naftopidil gives a second-order calibration graph over the concentration range 0.1–40.0 mg L–1 with a detection limit calculated (as proposed by IUPAC) of 92.5 ng mL–1 and a standard deviation of 0.12 mg mL–1 for ten samples of 10.0 mg L–1 naftopidil. In the presence of 1.15 M formic acid, naftopidil gives a second-order calibration graph over the concentration range 0.05–40.0 mg L–1 with a detection limit of 14.2 ng mL–1 and a standard deviation of 0.37 mg mL–1 for ten samples of 10.0 mg L–1 naftopidil. In both cases, the determination is free from interferences from common excipients such as sucrose, glucose, lactose, starch and citric acid.  相似文献   

4.
A reliable multiclass method has been developed and validated for the determination of eight antibiotics from distinct classes (sulfonamides, macrolides, fluoroquinolones, tetracyclines, cephalosporins and dihydrofolate reductase inhibitors) in wastewater – influent and effluent – and surface water from Porto Alegre, Brazil. The pre-concentration and clean-up was conducted with a simple and fast protocol using solid-phase extraction allowing a 100-fold concentration factor. The proposed method was validated by using spiked blank wastewater samples in terms of linearity, repeatability, reproducibility, recovery, matrix effects and limits of detection and quantification. Recovery was obtained in the range of 66–149%. Method limit of quantification ranged between 1.6 and 61.7 ng L?1. Samples (n = 16) were taken from January to August 2011 in one wastewater treatment plant, which uses conventional biological treatment. Sulfamethoxazole and trimethoprim show higher concentration, ranging from >10 to <6500 ng L?1, whereas erythromycin presented the lower amount. Differences between influent and effluent profiles were discussed. Surface water samples (n = 8) were collected in Arroio Diluvio, in four sampling points, in February 2012. From the eight antibiotics analysed, five were detected: sulfamethoxazole, trimethoprim, azythromicyn, ciprofloxacin and norfloxacin, in a concentration range of 376–572 ng L?1, 27–94 ng L?1, 24–40 ng L?1, 16–66ng L?1 and 30–54 ng L?1, respectively.  相似文献   

5.
The products of ascorbic acid oxidation in the presence of cobalt octa-4,5-carboxy-phthalocyanine sodium salt (TPH) were identified. These include the ascorbate radical (A·), hydroxyl radical (OH·), and hydrogen peroxide (H2O2). The kinetics of accumulation and consumption of the reaction products was studied. For the concentration ranges of ascorbic acid = 0–2.5 ⋅ 10−3 mol L−1 and the catalyst C TPH = 0–3.5 ⋅ 10−5 mol L−1, the the highest possible concentration of the ascorbate radical is ∼10−7 mol L−1, the concentration of H2O2 is 7 ⋅ 10−4 (30% of the starting concentration of ascorbic acid) and the concentration of the hydroxyl radical is at most 10−6 mol L−1.__________Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 2224–2228, October, 2004.  相似文献   

6.
An arsenic chemical speciation study was performed in 2000, using air filters on which total suspended particles (TSP) were collected, from the city of Huelva, a medium size city with huge industrial influence in SW Spain. Different procedures for extraction of the arsenic species were performed using water, NH2OH.HCl, and H3PO4 solutions, with either microwave or ultrasonic radiation. The best optimised extraction methods were use of 100 mmol L–1 NH2OH.HCl and 10 mmol L–1 H3PO4 and microwave radiation for 4 min. High-performance liquid chromatography coupled with hydride generation and atomic fluorescence spectrometry (HPLC–HG–AFS) was employed for determination of the arsenic species. The results from 12 TSP air filters collected on a monthly basis showed extraction was quantitative (94% with NH2OH.HCl and 86% H3PO4). Only inorganic arsenic species (arsenite and arsenate) were detected. The mean arsenite concentration was 1.2±0.3 ng m–3 (minimum 0.3 ng m–3, maximum 1.8 ng m–3). The mean arsenate concentration was 10.4±1.8 ng m–3, with greater monthly variations than arsenite (minimum 2.1 ng m–3, maximum 30.6 ng m–3). The high level of arsenic species in the TSP samples can be related to a copper smelter located in the region.  相似文献   

7.
A gas chromatographic–mass spectrometric method has been developed for rapid and sensitive determination of odorous compounds in water. The water sample (200 mL), at pH 6.5, was extracted with 1 mL pentane in a 250-mL separatory funnel. Fluorobenzene was added to the water sample as internal standard and the solution was mechanically shaken for 5 min and analyzed by GC–MS, with selected ion monitoring, without further concentration or purification steps. The peaks had good chromatographic properties and extraction of the compounds from water resulted in relatively high recoveries with small variations. The detection limits of the assay were 0.1 ng L–1 for 2-isopropyl-3-methoxypyrazine, 2-isobutyl-3-methoxypyrazine, 2-methylisoborneol, and geosmin, 0.5 ng L–1 for anisole, and 1.0 ng L–1 for 2,4,6-trichloroanisole and trans, trans-2,4-heptadienal. Turn-around time was one day for up to approximately 40 samples. The method is simple, convenient, and can be learned easily by relatively inexperienced personnel. It was used to analyze seven odorous compounds in water from Decheung-Lake in Korea, and raw and treated water originating from the same lake. In the summer of 2001 significant levels of anisole (up to 225 ng L–1) were observed, and geosmin and 2-methylisoborneol were detected at concentrations of up to 23.8 and 26.7 ng L–1, respectively. 2-Isopropyl-3-methoxypyrazine, 2-isobutyl-3-methoxypyrazine, and trans, trans-2,4-heptadienal levels during that period were not significant. The method can used for simultaneous detection of several odorous compounds in water.  相似文献   

8.
A sensitive procedure for determination of micro-traces of Co(II) by adsorptive stripping voltammetry is proposed. The procedure exploits the enhancement of the cobalt peak obtained by use of the system Co(II)–dimethylglyoxime–piperazine-1,4-bis(2-ethanesulfonic acid)–cetyltrimethylammonium bromide. Using the optimized conditions, a detection limit (based on the 3 criterion) for Co(II) of 1.2×10–11 mol L–1 (0.7 ng L–1) was achieved. The calibration plot for an accumulation time of 30 s was linear from 5×10–11 to 4×10–9 mol L–1. The procedure was validated by analysis of certified reference materials and natural water samples.  相似文献   

9.
A method based on liquid-liquid extraction (LLE) and automated large volume injection (LVI)-GC-MS analysis was developed for the trace determination of phthalate di-esters in water samples at sub-g L–1 (ppb) levels. Strategies applied to reduce contamination include (i) careful selection of tools, glassware and solvents, (ii) systematic blank checks of the chromatographic system, glassware and solvents and (iii) frequent verifications of blanks during sequences. Background levels could be reduced to those present in the extraction solvent. For phthalates not present in the extraction solvent the limits of quantitation (LOQ) are 6 ng L–1 for di-methyl phthalate (DMP), 3 ng L–1 for benzylbutyl phthalate (BzBP) and 45 ng L–1 for the isomeric phthalate mixtures di-isononyl phthalate (DiNP) and di-isodecyl phthalate (DiDP). For the other phthalates, the LOQ was set at twice the blank (extraction solvent) level and are 20 ng L–1 for di-ethyl phthalate (DEP), 60 ng L–1 for di-isobutyl phthalate (DiBP), 80 ng L–1 for di-n-butyl phthalate (DBP) and 30 ng L–1 for bis-(2-ethylhexyl) phthalate (DEHP).Dedicated to Professor K. Jinno on the occasion of his 60th birthday  相似文献   

10.
A novel procedure has been developed for spectrophotometric determination of anionic surfactants in water using a solenoid micro-pump as fluid-propulsion device. The proposed method is based on substitution of methyl orange (MO) by anionic surfactants in the formation of an ion-pair with the cetyl pyridine ion (CPC+) at pH 5.0. The flow network comprised four solenoid micro-pumps which, under microcomputer control, enabled sample and reagent introduction, and homogenisation in the reaction zone. The system is flexible and simple to operate and control, and sensitive and precise. The analytical plot for the anionic surfactant was linear between 1.43×10–6 and 1.43×10–5 mol L–1 (0.5 to 5.0 mg L–1; R=0.997, n=5). The relative standard deviation was 0.8% (n=11) for a sample containing 5.74×10–6 mol L–1 (2 mg L–1) surfactant. The limit of detection was 9.76×10–8 mol L–1 (0.034 mg L–1) and the sampling throughput was 60 determinations per hour. The results obtained for washing-water samples were comparable with those obtained by use of the reference method, and no significant differences at the 95% confidence level were observed.  相似文献   

11.
On the basis of enhancement of resonance light scattering (RLS) of copper phthalocyanine tetrasulfonic acid (CuTSPc) by nucleic acids and cetyltrimethylammonium bromide (CTMAB) under suitable conditions, a new RLS method for determination of nucleic acids in aqueous solutions has been developed. At pH 9.80–10.95 and ionic strength 0.01 mol L–1 (NaCl), the interaction of copper phthalocyanine tetrasulfonic acid with nucleic acids in the presence of cetyltrimethylammonium bromide results in enhanced RLS signals at 282.0 nm, 383.6 nm, and 616.2 nm in the enhanced regions. It was found that the enhanced RLS intensity at 383.6 nm was proportional to the concentration of nucleic acids within suitable ranges. The limits of detection were 10.6 ng mL–1 for fish sperm DNA and 32.4 ng mL–1 for calf thymus DNA when the concentration of copper phthalocyanine tetrasulfonic acid was 2.0×10–6 mol L–1. This method is rapid, simple and sensitive. In addition, the reagents used are relatively inexpensive, stable, and easily synthesised. The method can be applied to the determination of nucleic acids in the presence of coexisting substances, and we have applied it to the determination of DNA in synthetic samples, with satisfactory results.  相似文献   

12.
A sensitive and efficient flow-injection (FI) preconcentration and matrix-separation technique coupled to sector field ICP–mass spectrometry (SF-ICP–MS) has been developed and validated for simultaneous determination of ultra-low levels of uranium (U) and thorium (Th) in human urine. The method is based on selective retention of U and Th from a urine matrix, after microwave digestion, on an extraction chromatographic TRU resin, as an alternative to U/TEVA resin, and their subsequent elution with ammonium oxalate. Using a 10 mL sample, the limits of detection achieved for 238U and 232Th were 0.02 and 0.03 ng L–1, respectively. The accuracy of the method was checked by spike-recovery measurements. Levels of U and Th in human urine were found to be in the ranges 1.86–5.50 and 0.176–2.35 ng L–1, respectively, well in agreement with levels considered normal for non-occupationally exposed persons. The precision obtained for five replicate measurements of a urine sample was 2 and 3% for U and Th, respectively. The method also enables on-line measurements of the 235U/238U isotope ratios in urine. Precision of 0.82–1.04% (RSD) was obtained for 235U/238U at low ng L–1 levels, using the FI transient signal approach.  相似文献   

13.
Imidacloprid is a new insecticide with a wide range of action. Because honeybees are very sensitive to this substance, two techniques (HPLC–UV and GC–MS) which enable its detection in several matrices of both animal and vegetable origin were used to monitor its possible presence in cultivated land. In the first method quantification of imidacloprid in honeybees was achieved by use of the external standard method; the detection limit was 50 mg kg–1, the linear range 0.05–1 mg mL–1, recovery 60–83%, and the imprecision (coefficient of variation) 8.6% for repeatability and 11.8% for reproducibility. Recovery from pollen was 71–98% in the range 0.05–0.5 mg kg–1. The repeatability was 9.2–13.9%. Imidacloprid can often be found in the environment, not as a simple molecule but as a group of degradation products. The GC–MS method could be used to quantify all these species as oxidation products and to determine the initial quantity of imidacloprid by use of a conversion factor. The liquid chromatographic analysis could be used to detect, in a standard solution, 10 ng mL–1 derivatized 6-chloronicotinic acid. The linearity was good (R=0.999) over a wide concentration range (10 g mL–1–10 ng mL–1). Several samples with different matrices (filter paper placed on an pneumatic corn seed drill, grass, flowers, honeybees, etc.) obtained during the sowing period for imidacloprid-treated corn were analyzed. The quantification limit (LOQ) was 0.005 mg kg–1 for grass and flowers, 0.002 mg kg–1 for honeybees, and 0.024 mg kg–1 for paper filters.  相似文献   

14.
Summary Effective analytical methods for the simultaneous determination of five pharmaceuticals from various therapeutic classes in a variety of aqueous samples have been developed and method performance data are presented. The method involves the simultaneous extraction of the selected pharmaceuticals from the aqueous phase by solid phase extraction using a hyper cross linked, polystyrene-divinylbenzene polymer based sorbent. Analytes were eluted with methanol, derivatised with N-methyl-N-trimethylsilyltrifloroacetamide and analysed by gas chromatography – electron ionisation mass spectrometry (GC-EI-MS). Recoveries of 50 to 98% were established for waters spiked with the studied compounds at the low ng L–1 level with the highest detection sensitivities being achieved in the selected ion monitoring (SIM) mode and the quantification limit of the procedure for sample sizes of 1000 ml was approximately 5 ng L–1 for all matrices except sewage which was only tested to 20 ng L–1. Analysis of domestic sewage from a large treatment works demonstrate the presence of all five compounds in both influents and effluents.  相似文献   

15.
Under natural conditions gold has low solubility that reduces its bioavailability, a critical factor for phytoextraction. Researchers have found that phytoextraction can be improved by using synthetic chelating agents. Preliminary studies have shown that desert willow (Chilopsis linearis), a common inhabitant of the Chihuahuan Desert, is able to extract gold from a gold-enriched medium. The objective of the present study was to determine the ability of thiocyanate to enhance the gold-uptake capacity of C. linearis. Seedlings of this plant were exposed to the following hydroponics treatment: (1) 5 mg Au L–1 (2.5×10–5 mol L–1), (2) 5 mg Au L–1+10–5 mol L–1 NH4SCN, (3) 5 mg Au L–1+5×10–5 mol L–1 NH4SCN, and (4) 5 mg Au L–1+10–4 mol L–1 NH4SCN. Each treatment had its respective control. After 2 weeks we determined the effect of the treatment on plant growth and gold content by inductively coupled plasma–optical emission spectroscopy (ICP–OES). No signs of shoot-growth inhibition were observed at any NH4SCN treatment level. The ICP–OES analysis showed that addition of 10–4 mol L–1 NH4SCN increased the concentration of gold by about 595, 396, and 467% in roots, stems, and leaves, respectively. X-ray absorption spectroscopy (XAS) studies showed that the oxidation state of gold was Au(0) and that gold nanoparticles were formed inside the plants.  相似文献   

16.
We report the electroanalytical determination of lead by anodic stripping voltammetry at in-situ-formed, bismuth-film-modified, boron-doped diamond electrodes. Detection limits in 0.1 mol L–1 nitric acid solution of 9.6x10–8 mol L–1 (0.2 ppb) and 1.1x10–8 mol L–1 (2.3 ppb) were obtained after 60 and 300 s deposition times, respectively. An acoustically assisted deposition procedure was also investigated and found to result in improved limits of detection of 2.6×10–8 mol L–1 (5.4 ppb) and 8.5×10–10 mol L–1 (0.18 ppb) for 60 and 300 s accumulation times, respectively. Furthermore, the sensitivity obtained under quiescent and insonated conditions increased from 5.5 (quiescent) to 76.7 A mol–1 L (insonated) for 60 s accumulation and from 25.8 (quiescent) to 317.6 A mol–1 L (insonated) for 300 s accumulation. Investigation of the use of ultrasound with diluted blood revealed detection limits of the order of 10–8 mol L–1 were achievable with excellent inter- and intra-reproducibility and sensitivity of 411.9 A mol–1 L . For the first time, electroanalytical detection of lead in diluted blood is shown to be possible by use of insonated in-situ-formed bismuth-film-modified boron-doped diamond electrodes. This method is a rapid, sensitive, and non-toxic means of clinical sensing of lead in whole human blood.  相似文献   

17.
Stir-bar-sorptive extraction followed by liquid desorption and large-volume injection capillary gas chromatography with mass spectrometric detection (SBSE–LD–LVI-GC–MS), had been applied for the determination of ultra-traces of eight pyrethroid pesticides (acrinathrin, cypermethrin, deltamethrin, esfenvalerate, fenpropathrin, fenvalerate, and permethrin cis and trans isomers) in water samples. Instrumental calibration for selected-ion monitoring acquisition and conditions that could affect the SBSE–LD efficiency are fully discussed. By performing systematic assays on 30-mL water samples spiked at the 0.10 g L–1 level it was established that stir-bars coated with 47 L polydimethylsiloxane, an equilibrium time of 60 min (750 rpm), 5% methanol as organic modifier, and acetonitrile as back-extraction solvent, provided the best analytical performance to monitor pyrethroid pesticides in water matrices. Good accuracy (81.8–105.0%) and remarkable reproducibility (<11.7%) were obtained, and the experimental recovery data were in good agreement with the theoretical equilibrium described by octanol–water partition coefficients (log KO/W), with the exception of acrinathrin for which lower yields were measured. Excellent linear dynamic ranges between 25 and 400 ng L–1 (r2>0.994), low quantification (3.0–7.5 ng L–1) and detection (1.0–2.5 ng L–1) limits were also achieved for the eight pyrethroid pesticides studied. The method was successfully used for analysis of tapwater and groundwater matrices spiked at the 0.10 g L–1, revealing the suitability of the method for determination of pyrethroid pesticides in real samples. The method was shown be reliable and sensitive and a small volume of sample was required to monitor pyrethroids at ultra-trace levels, in compliance with international regulatory directives on water quality.  相似文献   

18.
Procedures for trace cobalt determinations by adsorptive stripping voltammetry at in situ and ex situ plated bismuth film electrodes are presented. These exploit the enhancement of the cobalt peak obtained by using the Co(II)–dimethylglyoxime–cetyltrimethylammonium bromide–piperazine-N,N-bis(2-ethanesulfonic acid) system. The calibration graph for an accumulation time of 120 s was linear from 2 × 10–10 to 2 × 10–8 mol L–1. The relative standard deviation from five determinations of cobalt at a concentration of 5 × 10–9 mol L–1 was 5.2%. The detection limit for an accumulation time of 300 s was 1.8 × 10–11 mol L–1. The proposed procedure was applied to cobalt determination in certified reference materials and in tap and river water samples.  相似文献   

19.
The construction and electroanalytical response characteristics of poly(vinyl chloride) matrix ion-selective sensors (ISSs) for drotaverine hydrochloride are described. The membranes incorporate ion-association complexes of drotaverine with tetraphenylborate, picrate, tetraiodomercurate, tetraiodobismuthate, Reinecke salt, and heteropolycompounds of Keggin structure—molybdophosphoric acid, tungstophosphoric acid, molybdosiliconic acid and tungstosiliconic acid as electroactive materials for ionometric sensor controls. These ISSs have a linear response to drotaverine hydrochloride over the range 8×10–6 to 5×10–2 mol L–1 with cationic slopes from 51 to 58 mV per concentration decade. These ISSs have a fast response time (up to 1 min), a low determination limit (down to 4.3×10–6 mol L–1), good stability (3–5 weeks), and reasonable selectivity. Permeabilities and ion fluxes through a membrane were calculated for major and interfering ions. Dependences of the transport properties of the membranes on the concentrations of the ion exchanger and near-membrane solution and their electrochemical characteristics are presented. The ISSs were used for direct potentiometry and potentiometric titration (sodium tetraphenylborate) of drotaverine hydrochloride. Results with mean accuracy of 99.1±1.0% of nominal were obtained which corresponded well to data obtained by use of high-performance liquid chromatography.  相似文献   

20.
A method is described for the simultaneous determination of very low levels of Co and Cr by high performance ion chromatography coupled with a chemiluminescence detection system. 0.1M K2SO4 solutions, adjusted to pH 3.0, were used as eluent to separate Co(II) and Cr(III) between them and from interferents. The detection system was the chemiluminescence of luminol/ H2O2 in alkaline medium catalyzed by such transition metals. Using a matrix solution analogous to soda-lime silica glass (dissolved in acids) calibration graphs were linear up to 0.5 ng ml–1 for cobalt and up to 250 ng ml–1 for chromium. The corresponding calculated detection limits (3 s) in such matrix were 0.05 ng ml–1 and 15 ng ml–1 for Co and Cr, respectively. The relative standard deviations were 1.4% at 0.5 ng ml–1 Co level and 2.8% at the 200 ng ml–1 Cr level. No interferences were observed from the more common metals, particularly those present in glass samples. The ion chromatography/ chemiluminescent method proposed has been successfully applied to the analysis of Co and Cr in glasses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号