首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Different from traditional methods for preparing pH-switchable Pickering emulsifiers, a simple and straightforward approach is established on the basis of a reversible process between in situ formation and dissolution of Mg(OH)(2) nanoparticles (MHp). It was found that when pH value was above 9.5, emulsions of liquid paraffin-in-water can be stabilized by the resulting surface-active particles. Below this pH, emulsions demulsify, resulting in a reversible Pickering emulsifier. Based on the strongly pH-dependent precipitation of metal hydroxide nanoparticles, this procedure offers a new way to design pH-switchable emulsifiers without aid of any other organic matters.  相似文献   

2.
Raspberry‐like hybrid nanocapsules with a hydrophobic liquid core were successfully prepared via the copolymerization of styrene, divinylbenzene (DVB), and 4‐vinyl pyridine (4‐VP) in Pickering‐stabilized miniemulsions by using silica particles as the sole emulsifier and hexadecane (HD) as liquid template. When compared with conventional Pickering miniemulsions and Pickering suspensions, the colloidal stability of the current systems is much more sensitive to the variation of reaction parameters such as pH, size, amount of silica particles, and content of 4‐VP. The systems without coagulum were only obtained in a narrow pH range at around 9.5 and by using 12 nm silica particles as emulsifier. The formation of well‐defined raspberry‐like capsules was confirmed by transmission electron microscopy (TEM) and high‐resolution scanning electron microscopy (HRSEM). The stable attachment of silica particles on the surface of hybrid particles was verified by centrifugation and subsequent characterizations, such as Fourier transform infrared spectroscopy, TEM, and HRSEM. The influence of pH and weight content of HD, DVB, and 4‐VP on the particle morphology was extensively investigated. Interestingly, the particle morphology strongly depends on the particle size. When compared with the organic surface‐active surfactant, the formation of capsule morphology could be promoted by the application of silica particles taking advantage of their surface inactivity. The formation mechanisms of capsules/solid particles are discussed. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

3.
Pickering乳液模板法制备Janus粒子   总被引:4,自引:0,他引:4  
本文以SiO2粒子稳定的水包油(O/W)型Pickering乳液作为模板, 在乳液连续相进行SI-ATRP, 将聚合物刷接枝到SiO2粒子外半表面, 破乳得到半修饰的Janus粒子.  相似文献   

4.
Retaining emulsions stable at high acidity and salinity is still a great challenge. Here, we report a novel multi-headgroup surfactant (C3H7−NH+(C10COOH)2, di-UAPAc) which can be reversibly transformed among cationic, anionic and zwitterionic forms upon pH variation. Stable oil-in-dispersion (OID) emulsions in strong acidity (pH=2) can be co-stabilized by low concentrations of di-UAPAc and silica nanoparticles. High salinity at pH=2 improves the adsorption of di-UAPAc on silica particles through hydrogen bonding, resulting in the transformation of OID emulsions into Pickering emulsions. Moreover, emulsification/demulsification and interconversion between OID and Pickering emulsions together with control of the viscosity and droplet size can be triggered by pH. The present work provides a new protocol for designing surfactants for various applications in harsh aqueous media, such as strong acidity and high salinity, involved in oil recovery and sewerage treatments.  相似文献   

5.
Stabilization of emulsions with solid particles can be used in several fields of oil and gas industry because of their higher stability. Solid particles should be amphiphilic to be able to make Pickering emulsions. This goal is achieved by using surfactants at low concentrations. Oil-in-water (o/w) emulsions are usually stabilized by surfactant but show poor thermal stability. This problem limits their applications at high-temperature conditions. In this study, a novel formulation for o/w stabilized emulsion by using silica nanoparticles and the nonionic surfactant is investigated for the formulation of thermally stable Pickering emulsion. The experiments performed on this Pickering emulsion formula showed higher thermal stability than conventional emulsions. The optimum wettability was found for DME surfactant and silica nanoparticles, consequently, in that region; Pickering emulsion showed the highest stability. Rheological changes were evaluated versus variation in surfactant concentration, silica concentration and pH. Scanning electron microscopy images approved the existence of a rigid layer of nanoparticle at the oil-water interface. Finally, the results show this type of emulsion remains stable in harsh conditions and allows the system to reach its optimum rheology without adding any further additives.  相似文献   

6.
The hydrophobic fumed silica suspensions physically pre-adsorbed poly(N-isopropylacrylamide) (PNIPAM) in water could prepare oil dispersed in water (O/W) Pickering emulsion by mixing of silicone oil. The resulting Pickering emulsions were characterized by the measurements of volume factions of emulsified silicone oil, adsorbed amounts of the silica suspensions, oil droplet size, and some rheological responses, such as stress-strain sweep curve and dynamic viscoelastic moduli as a function of the added amount of PNIPAM. Moreover, their characteristics were compared with those of the O/W Pickering emulsions prepared by the hydrophilic fumed silica suspensions pre-adsorbed PNIPAM. For the emulsions prepared by the hydrophobic silica suspensions, an increase in the added amount of PNIPAM led to (1) a decrease in the volume fraction of the emulsified oil in the emulsified phase, (2) both the size of oil droplets and the adsorbed amount of the corresponding silica suspensions being almost constant, except for the higher added amounts, and (3) both the storage modulus (G′) and the yield shear strain being constant. The term of 1 is the same for the emulsions prepared by the hydrophilic silica suspensions, whereas both the adsorbed amount of the corresponding silica suspension and the G′ value increase and both the droplet size and the yield shear strain decrease with an increase in the added amount of PNIPAM. The differences between the rheological properties of the emulsions prepared by the hydrophilic silica suspensions and those by the hydrophobic ones are attributed to the hydrophobic interactions of the flocculated silica particles in the Pickering emulsions.  相似文献   

7.
A novel way is introduced to control polymerization routes and morphology of final polymer microspheres during the Pickering polymerization. Cetyltrimethylammonium bromide (CTAB)‐modified silica and different initiators are used simultaneously to determine the initiation location, nucleation step, and morphology of final particles. As Pickering stabilizer, the CTAB‐modified silica is characterized by dynamic light scattering. The size and distribution of the oil droplets stabilized by the silica nanoparticles is observed by optical microscopy. The resulted silica/polymer composite microspheres are characterized by scanning electron microscopy and transmission electron microscopy. The silica content is measured by thermogravimetric analysis. It is proven that both surface property of inorganic particles and type of initiators can greatly affect the polymerization routes and the morphology of the obtained polymer microspheres. Detailed formation mechanisms of several kinds of polymer particles are also proposed. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

8.
Poly(styrene-co-methacrylic acid) (PS-co-MAA) particles were synthesized via surfactant-free emulsion polymerization and then used as particulate emulsifiers for preparation of Pickering emulsions. Our results showed that adjusting the solution pH can tune the wettability of PS-co-MAA particles to stabilize either water-in-oil (W/O) or oil-in-water (O/W) Pickering emulsions. Stable W/O emulsions were obtained with PS-co-MAA particles at low pH values due to their better affinity to the dispersed oil phase. In contrast, increasing the pH value significantly changed the stabilizing behavior of the PS-co-MAA particles, leading to the phase inversion and formation of stable O/W emulsions. We found that the oil/water ratio had a significant influence on pH value of the phase inversion. It decreased with decreasing the oil/water ratio, and no phase inversion occurred when the styrene volume fraction reduced to 10 %. Additionally, macroporous polystyrene (PS) foam and PS microspheres were obtained via polymerization of Pickering high internal phase emulsion (Pickering HIPE) and O/W Pickering emulsion, respectively.  相似文献   

9.
We report on a single-step coating process and the resulting colloidal stability of silica-coated spindle-type hematite nanoparticles (NPs) decorated with a layer of poly(acrylic acid) (PAA) polyelectrolyte chains that are partially incorporated into the silica shell. The stability of PAA coated NPs as a function of pH and salt concentration in water was compared to bare hematite particles and simple silica-coated hematite NPs, studying their electrophoretic mobility and the hydrodynamic radius by dynamic light scattering. Particles coated with this method were found to be more stable upon the addition of salt at pH 7, and their aggregation at the pH of the isoelectric point is reversible. The hybrid coating appears to increase the colloidal stability in aqueous media due to the combination of the decrease of the isoelectric point and the electrosteric stabilization. This coating method is not limited to hematite particles but can easily be adapted to any silica-coatable particle.  相似文献   

10.
This study presents a very simple method to fabricate organic–inorganic asymmetric colloid spheres. In this approach, when silica particles are used as the Pickering emulsifier to stabilize the monomer droplets (styrene) in water via acid–base interaction between silica particles and auxiliary monomer (1‐vinylimidazole), the exposed surfaces of silica particles are very easy to be locally modified with 3‐(trimethoxysilyl)propyl methacrylate. When water‐based initiator is added, polystyrene–silica asymmetric colloid spheres are highly yielded. The sizes of silica and polymer particles can be tunable. These organic–inorganic anisotropic colloid spheres can self‐assemble into an interesting thickness‐dependent film. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

11.
选用二氧化硅纳米粒子(H30)和聚(乳酸-羟基乙酸)共聚物(PLGA)为复合稳定剂, 成功制备出内相体积分数高达90%的高内相Pickering 乳液. 对照实验表明: 单独用H30粒子作稳定剂, 内相体积分数上限为75%; 单独用PLGA 作稳定剂, 发生严重相分离, 不能形成乳液. 无机纳米粒子与聚合物之间的协同作用在制备高内相乳液的过程中起到了关键作用. 因此, 使用无机粒子和聚合物作为混合稳定剂制备高内相乳液是一种新型而有效的方法.  相似文献   

12.
In this study, a new analytical/experimental method is proposed in order to investigate the adsorption of different-sized spherical silica particles at the oil/water interface in a Pickering emulsion system as a well-known method to produce Janus particles. Accordingly, the characteristic of the produced silica Janus particles was defined based on their penetration depth into dispersed oil droplets. To ensure the accuracy of the method, the penetration depth of silica particles was also measured using field emission scanning electron microscopy images of solidified oil droplets covered with particles. The results revealed that the penetration depth increases with the size of the particles.  相似文献   

13.
Polystyrene (PS) particles were prepared via Pickering emulsion polymerization using graphene oxide (GO) as the stabilizer. The results show that pH is an important factor in the stability of Pickering emulsions. The effects of two different phase initiators, the water phase initiator potassium persulfate and the oil phase initiator azobisisobutyronitrile, on the morphology of PS particles in Pickering emulsion polymerization had been investigated in detail. Wrinkled particles were prepared using the water phase initiator, and spherical particles were prepared using the oil phase initiator. In addition, hexadecane was used as the auxiliary stabilizer in the polymerization, which narrowed the diameter distribution of the PS spheres, and the hollow PS spheres were fabricated. The size of the GO particles also influenced the final morphology of the particles. Nano-sized polymer particles were grafted onto the surface of micro-sized GO. Small GO particles were suitable for Pickering emulsion polymerization to prepare the composite particles. The thermogravimetric analysis of the prepared particles confirmed that they were PS/GO composite particles, which could have a wide range of potential applications, such as in catalysts, sensors, environmental remediation, and energy storage.  相似文献   

14.
Droplet evolution in unstable, dilute oil-in-water Pickering emulsions was characterised using a combination of light scattering, confocal microscopy and rheology. Emulsions were formed at concentrations of silanised fumed silica particles that are not sufficient to prevent destabilisation. The key result is that destabilisation initially occurs via a combination of droplet flocculation and permeation. Close contact between the drops enhances oil transfer from smaller drops to the larger ones. The large drops swell over time until the attached particle density is insufficient to protect the drops against coalescence. Examination of the emulsion microstructure revealed the relationship between drop stability and the structural characteristics of the aggregates formed due to coagulation of the silica particles in the emulsions. The implications of these results for controlling Pickering emulsion stability are discussed.  相似文献   

15.
Positively charged, raspberry‐like hybrid nanoparticles, consisting of a polystyrene core and an alumina‐coated silica shell were successfully prepared in a surfactant free system via the radical copolymerization of styrene (St) and different comonomers (acrylic acid, methacrylic acid, and acrylamide) by using a cationic silica sol as the sole emulsifier in Pickering miniemulsion polymerization. The influence of different parameters like pH of the dispersion, comonomer content, and the amount and size of silica nanoparticles on the colloidal stability of the systems, prepared with different comonomers, was examined. The particles' morphology was observed via high‐resolution scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The removal of free silica particles via centrifugation was proved by TEM and SEM, and the content of free and adsorbed silica was quantified via thermogravimetric analysis (TGA). © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

16.
The guanidine group-modified silica particles were used as emulsifier to obtain a CO2-responsive Pickering emulsion. To compare the wettability effect of the particles on the stability of the emulsion, both guanidine and alkyl chain were attached on the surface of silica particles. The influences of tension, particles concentration, oil-water fraction, NaCl concentration, and CO2 on Pickering emulsion properties were investigated. Although the particles did not decrease the surface and interfacial tensions of the air/oil-water interfaces, they attached on the oil–water interfaces and stabilized the emulsions at room temperature for at least 4 weeks. Addition of salt increased the emulsion stability and induced phase inversion at high salt concentration. The stabilization–destabilization cycles of the emulsion could be successively controlled by alternative CO2/heating triggers due to the protonation-deprotonation of guanidine groups on the particle surfaces.  相似文献   

17.
The evaporation driven self‐assembly of novel colloidal silica Janus particles was evaluated by scanning electron microscopy in comparison to unfunctionalized silica particles. The cyclodextrin‐ and azobenzene‐modified compound was obtained utilizing Pickering emulsion approach, in which the particles were immobilized on solidified wax droplets and subsequently functionalized. Silica particles were modified with 3‐aminopropyl trimethoxysilane and afterward reacted with tosyl‐β‐CD or phenylazo(benzoic acid), respectively. Mesoscopic structures of the colloidal dispersions, as dried films from aqueous solution, have been investigated by scanning electron microscopy and dynamic light scattering. Interestingly, it has been observed that the Janus particles show a significantly different evaporation‐induced assembly than the unmodified particles.  相似文献   

18.
Pickering stabilization is a facile method to create composite colloidal particles. Inorganic colloidal SiO2 nanoparticles are often used as the stabilizer for particles instead of the more common amphiphilic surfactants. Here the use of this approach in radical‐mediated thiol‐ene suspension polymerizations using monomers 1,3,5‐triallyl‐1,3,5‐triazine‐2,4,6(1H,3H,5H)‐trione (TTT) and pentaerythritol tetrakis (3‐mercaptopropionate) (PETMP) is described. The resulting micron‐sized crosslinked poly(thioether) colloidal particles are coated with 80 nm silica nanoparticles. The addition of a small amount of various costabilizers is examined (hexadecane, cetyl alcohol and toluene), and while all yielded particles, cetyl alcohol provide more consistent results. Scanning electron microscopy and thermal analysis of the composite particles demonstrate morphologies that are consistent with a raspberry‐like structure. No significant changes to the glass transition temperature are observed, which is consistent with the silica nanoparticles being located at the surface of the polymer particles.  相似文献   

19.
Pickering emulsion is the replacement of surfactants with solid, often nano-sized particles. The particle-stabilized emulsions have good thermodynamic and kinetic stability. Pickering emulsion liquid membrane (PELM) was prepared using mahua oil as a diluent, aliquat 336 (Trioctyl methylammonium chloride) as a carrier and amphiphilic silica nanowires (ASNWs) (10–40?ml ethanol addition) as a surfactant. Sodium hydroxide (NaOH) was used as stripping phase in the concentration range from 0.1 to 0.5?M for the extraction of hexavalent chromium [Cr (VI)] from aqueous solution. The variety of edible and non-edible oils was investigated for the stability of water in oil emulsion. Factors that influence silica-stabilized Pickering emulsions are pH, agitation speed, stripping phase concentration, the volume ratio of membrane to stripping phase (M/S), initial feed concentration, treat ratio(feed to emulsion volume ratio) and surfactant concentration for better PELM stability. And also, the extraction efficiency of Cr (VI) was investigated using aliquat as a carrier. The physicochemical properties of ASNWs were studied using Scanning Electron Microscopy (SEM), Fourier Transforms Infrared Spectroscopy (FTIR) and Dynamic Light Scattering (DLS) techniques. At an optimum condition, 99.69% of Cr (VI) removal from aqueous solution was obtained.  相似文献   

20.
This paper presents a novel and facile method of synthesizing polymer/silica particles with controlled asymmetric morphologies. Our approach is based on the sol–gel process in which cross-linked polystyrene particles (CPS) are adopted as templates and 3-mercaptopropyltriethoxysilane is used as a single silica source. The reaction process causes silane oligomer to preferentially grow on the local surface of CPS, giving rise to polystyrene/thiol-functionalized silica composite particles with a tunable shape. It is found that the morphologies of particles can be easily tailored by changing the ratio of ethanol/water in the reaction medium. In addition, the amount of cross-linker used during the polymerization also plays a key role in the formation of various complex-shaped particles. Controlled geometries of these organic/inorganic composite particles will allow a broad range of potential applications, such as photonic crystals, Pickering emulsifier, sensors, and so on.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号