首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work the thermal diffusion behavior of binary mixtures of linear alkanes (heptane, nonane, undecane, tridecane, pentadecane, heptadecane) in benzene has been investigated by thermal diffusion forced Rayleigh scattering (TDFRS) for a range of concentrations and temperatures. The Soret coefficient ST of the alkane was found to be negative for these n-alkane/benzene mixtures indicating that the alkanes are enriched in the warmer regions of the liquid mixtures. For the compositions investigated in this work, the magnitude of the Soret coefficient decreases with increasing chain length and increasing alkane content of the mixtures. The temperature dependence of the Soret coefficient depends on mixture composition and alkane chain length; the slope of ST versus temperature changes from positive to negative with increasing chain length at intermediate compositions. To study the influence of molecular architecture on the Soret effect, mixtures of branched alkanes (2-methylhexane, 3-methylhexane, 2,3-dimethylpentane, 2,4-dimethylpentane, 2,2,3-trimethylbutane, and 2,2,4-trimethylpentane) in benzene were also investigated. Our results for the Soret coefficients show that the tendency for the alkanes to move to the warmer regions of the fluid decreases with increasing degree of branching. The branching effect is so strong that for 2,2,4-trimethylpentane/benzene mixtures the Soret coefficient changes sign at high alkane content and that equimolar 2,2,3-trimethylbutane/benzene mixtures have positive Soret coefficients in the investigated temperature range. In order to investigate the effect of molecular interactions on thermal diffusion, we adapted a recently developed two-chamber lattice model to n-alkane/benzene mixtures. The model includes the effects of chain-length, compressibility, and orientation dependence of benzene-benzene interactions and yields good qualitative predictions for the Soret effect in n-alkane/benzene mixtures. For the branched isomers, we find some correlations between the moments of inertia of the molecules and the Soret coefficients. PACS numbers: 66.10.Cb, 61.25.Hq.  相似文献   

2.
We present a new model for thermal diffusion, and we compare its results for both simple and real systems. This model is derived from a kinetic approach with explicit mass and chemical contributions. It involves self-diffusion activation free energies, following Prigogine's original approach. We performed, furthermore, both equilibrium and nonequilibrium molecular dynamics evaluations in order to compute respectively the self-diffusion activation free enthalpies and the Soret coefficient when no experimental data were available. Our model is in very good agreement with simulation data on Lennard-Jones mixtures, and a good behavior is noted for the water-ethanol mixture, where the composition dependence at which the Soret coefficient changes its sign is predicted very accurately. Finally, we propose a new water-ethanol experiment at higher temperature in order to check the validity of our model.  相似文献   

3.
Reverse nonequilibrium molecular dynamics is the method applied here for the investigation of thermal diffusion in realistic molecular fluids. The Soret coefficients of benzene/cyclohexane mixtures are calculated using an all-atom model. The autocorrelation functions indicate that the mole fraction gradient converges much slower than the temperature gradient. Compared to experimental data, the results show the same tendency of the Soret coefficient variation versus the mole fraction. Although a systematic error exists for the magnitude of the Soret coefficient, a meanwhile systematic error for both the mutual diffusion and thermal diffusion coefficients provides some explanation of it; and the calculation with different force field parameters indicates a possibility to annihilate the systematic error. The influences of algorithm variables such as cutoff lengths and perturbation intensities are tested. Furthermore the temperature dependence of the Soret effect is observed, yielding the same trend as previous studies.  相似文献   

4.
5.
We performed systematic temperature and concentration dependent measurements of the Soret coefficient in different associated binary mixtures of water, deuterated water, dimethyl sulfoxide (DMSO), methanol, ethanol, acetone, methanol, 1-propanol, 2-propanol, and propionaldehyde using the so-called thermal diffusion forced Rayleigh scattering method. For some of the associating binary mixtures such as ethanol/water, acetone/water, and DMSO/water, the concentration xw+/- at which the Soret coefficient changes its sign does not depend on temperature and is equal to the concentration xw x where the Soret coefficient isotherms intersect. For others such as 1-propanol/water, 2-propanol/water, and ethanol/DMSO, the sign change concentration is temperature dependent, which is the typical behavior observed for nonassociating mixtures. For systems with xw+/-=xw x, we found that xw+/- depends linearly on the ratio of the vaporization enthalpies of the pure components. Probably due to the similarity of methanol and DMSO, we do not observe a sign change for this mixture. The obtained results are related to structural changes in the fluid observed by nuclear magnetic resonance, mass spectrometric, and x-ray experiments in the literature. Furthermore, we discuss the influence of hydrophilic and hydrophobic interactions and the solubility on thermal diffusion behavior.  相似文献   

6.
The accurate knowledge of transport properties of pure and mixture fluids is essential for the design of various chemical and mechanical systems that include fluxes of mass, momentum, and energy. In this study we determine the mutual diffusion coefficients of mixtures composed of heptane isomers and nitrogen using molecular dynamics (MD) simulations with fully atomistic intermolecular potential parameters, in conjunction with the Green-Kubo formula. The computed results were compared with the values obtained using the Chapman-Enskog (C-E) equation with Lennard-Jones (LJ) potential parameters derived from the correlations of state values: MD simulations predict a maximum difference of 6% among isomers while the C-E equation presents that of 3% in the mutual diffusion coefficients in the temperature range 500-1000 K. The comparison of two approaches implies that the corresponding state principle can be applied to the models, which are only weakly affected by the anisotropy of the interaction potentials and the large uncertainty will be included in its application for complex polyatomic molecules. The MD simulations successfully address the pure effects of molecular structure among isomers on mutual diffusion coefficients by revealing that the differences of the total mutual diffusion coefficients for the six mixtures are caused mainly by heptane isomers. The cross interaction potential parameters, collision diameter σ(12), and potential energy well depth ?(12) of heptane isomers and nitrogen mixtures were also computed from the mutual diffusion coefficients.  相似文献   

7.
We have computed the Soret coefficient in aqueous mixtures using a boundary driven nonequilibrium molecular dynamics algorithm and standard molecular force fields. The choice of this specific approach is justified by the nature of the mixtures studied here. Four aqueous solutions, including methanol, ethanol, acetone, and dimethyl-sulfoxide (DMSO) have been studied at ambient conditions for different compositions. The experimental behavior of water-alcohol mixtures was reproduced, including the change of sign of the Soret coefficient with composition, in excellent agreement with existing experimental data. The methodology has been applied to obtain pure predictions for water-acetone and water-DMSO where no experimental data are accessible. A change of sign is also observed in the same range of composition as in water-alcohol mixtures. It is suggested that the nature and strength of the molecular interactions, rather than the mass or shape ratio of the components, dominates the behavior of the Soret coefficient versus composition for the aqueous associating mixtures studied here.  相似文献   

8.
New molecular and thermal diffusion coefficients of binary mixtures of normal decane-normal alkanes and methylnaphthalene-normal alkanes are measured at atmospheric pressure and T = 25 degrees C. The normal alkanes used in this work include nC5-nC20. Thermal diffusion coefficients were measured in a thermogravitational column. Molecular diffusion coefficients were measured using an open-ended capillary tube technique. Results show a significant effect of molecular shape and size on thermal and molecular diffusion coefficients. Molecular diffusion coefficients show a monotonic behavior in both aromatic-normal alkane and normal decane-normal alkane mixtures. Thermal diffusion coefficients reveal a nonmonotonic trend with molecular size in the normal decane-normal alkane mixtures. This is the first report of the nonmonotonic behavior in the literature. The data presented in this paper provide an accurate self-molecular diffusion coefficient for nC10 from binary data.  相似文献   

9.
《Fluid Phase Equilibria》2004,224(1):13-22
This work is related to the definition of a reduced thermal diffusion coefficient thanks to numerical microscale molecular dynamics simulations. This cross transport process, also called Soret effect, couples mass flux and thermal gradient and is still largely misunderstood. For this study, we have applied a boundary driven non-equilibrium molecular dynamics algorithm on Lennard–Jones spheres mixtures. Simulations have been performed at a constant reduced supercritical state, using a van der Waals’ one fluid approximation in order to fulfil the law of the corresponding states. In binary mixtures, we have studied the molecular parameters and the molar fraction influences on thermal diffusion separately and then combined. It is shown that, on pressure and on thermal conductivity, the corresponding states law is fulfilled for a wide range of molecular parameters ratios. In this frame, we have then constructed simple correlations which relate thermal diffusion factor to the mixture parameters. Combining the relations obtained, a reduced thermal diffusion factor taking into account all the various contributions has been defined. Finally, it is shown that this relation enables us to estimate thermal diffusion in various binary and ternary mixtures of Lennard–Jones spheres representing alkanes with a maximum deviation of 15%.  相似文献   

10.
The separation of pentanol isomer mixtures is shown to be very efficient using the nanoporous adsorbent zeolitic imidazolate framework ZIF‐77. Through molecular simulations, we demonstrate that this material achieves a complete separation of linear from monobranched—and these from dibranched—isomers. Remarkably, the adsorption and diffusion behaviors follow the same decreasing trend, produced by the channel size of ZIF‐77 and the guest shape. This separation based on molecular branching applies to alkanes and alcohols and promises to encompass numerous other functional groups.  相似文献   

11.
12.
The thermal diffusion behavior of acetone/water and dimethylsulfoxide(DMSO)/water mixtures has been experimentally investigated by a transient holographic grating technique named thermal diffusion forced Rayleigh scattering (TDFRS). For both systems a sign change of the Soret coefficient S(T) with varying water content has been predicted by simulations [C. Nieto Draghi et al., J. Chem. Phys. 122, 114503 (2005)]. The sign change of S(T) is confirmed by the experiment. Except for equimolar concentrations of acetone/water the agreement between the experimental and simulation data is reasonable.  相似文献   

13.
The irradiation of gaseous alkane mixtures under circulation conditions was used for the synthesis of liquid branched hydrocarbons. It was found that the synthesized liquid product was a mixture of alkanes with the average molecular weight higher than the molecular weight of the parent gas by a factor of 3–4. The resulting liquids were characterized by boiling range from 35 to 200°C in atmospheric distillation. The average degree of molecular branching in the synthesized liquids was evaluated on the basis of their knock resistance. The octane ratings of liquid mixtures were above 95 (motor octane number) or 103 (research octane number). The fractional composition and detonation properties of the synthesized liquids suggested the prevalence of C5–C11 isomers with highly branched structures in these liquids. Depending on irradiation conditions, 2,3-dimethylbutane, 2-methylpentane, or 3-methylpentane was predominant among hexanes. As a rule, 2,2,3-trimethylbutane and 2,3-dimethylpentane prevailed among heptanes.  相似文献   

14.
Soret coefficients of the ternary system of poly(ethylene oxide) in mixed water/ethanol solvent were measured over a wide solvent composition range by means of thermal diffusion forced Rayleigh scattering. The Soret coefficient S(T) of the polymer was found to change sign as the water content of the solvent increases with the sign change taking place at a water mass fraction of 0.83 at a temperature of 22 degrees C. For high water concentrations, the value of S(T) of poly(ethylene oxide) is positive, i.e., the polymer migrates to the cooler regions of the fluid, as is typical for polymers in good solvents. For low water content, on the other hand, the Soret coefficient of the polymer is negative, i.e., the polymer migrates to the warmer regions of the fluid. Measurements for two different polymer concentrations showed a larger magnitude of the Soret coefficient for the smaller polymer concentration. The temperature dependence of the Soret coefficient was investigated for water-rich polymer solutions and revealed a sign change from negative to positive as the temperature is increased. Thermodiffusion experiments were also performed on the binary mixture water/ethanol. For the binary mixtures, the Soret coefficient of water was observed to change sign at a water mass fraction of 0.71. This is in agreement with experimental results from the literature. Our results show that specific interactions (hydrogen bonds) between solvent molecules and between polymer and solvent molecules play an important role in thermodiffusion for this system.  相似文献   

15.
We have performed measurements of the thermal diffusion coefficient D(T) in the dilute limit on polystyrene in cyclo-octane, cyclohexane, benzene, toluene, tetrahydrofuran, ethyl acetate, and methyl ethyl ketone and of poly(dimethyl-siloxane) in toluene. These data have been combined with literature data to test various theoretical predictions. The viscosity is identified as the dominating and only relevant solvent parameter. On the polymer side, the size or mass of an effective correlated segment determines the strength of the Soret effect. Large and heavy effective segments, as found in stiffer chains, lead to higher D(T).  相似文献   

16.
We calculate transport properties of a reacting mixture of F and F(2) from results of non-equilibrium molecular dynamics simulations. The reaction investigated is controlled by thermal diffusion and is close to local chemical equilibrium. The simulations show that a formulation of the transport problem in terms of classical non-equilibrium thermodynamics theory is sound. The chemical reaction has a large effect on the magnitude and temperature dependence of the thermal conductivity and the interdiffusion coefficient. The increase in the thermal conductivity in the presence of the chemical reaction, can be understood as a response to an imposed temperature gradient, which reduces the entropy production. The heat of transfer for the Soret stationary state was more than 100 kJ mol(-1), meaning that the Dufour and Soret effects are non-negligible in reacting mixtures. This sheds new light on the transport properties of reacting mixtures.  相似文献   

17.
We studied the thermal diffusion behavior for binary aqueous solutions of glucose, maltotriose, maltohexaose, pullulan, and dextran by means of thermal diffusion forced Rayleigh scattering (TDFRS). The investigated saccharides with molar masses between 0.180 and 440 kg mol(-1) were studied in the temperature range between 15 and 55 °C. The thermal diffusion coefficient D(T) and the Soret coefficient S(T) of all solutions increase with increasing temperature. For maltohexaose and the polymers the thermal diffusion coefficient changes sign from negative to positive with increasing temperature, whereas glucose and maltotriose show only positive values in the entire investigated temperature range. While we were able to find a master curve to describe the temperature dependence of D(T), we were not able to find a similar expression for S(T). This comprehensive study allows for the first time the determination of the interaction parameters for the polymer and the solvent within the theoretical framework suggested by Würger [Phys. Rev. Lett., 2009, 102, 078302].  相似文献   

18.
Thermal diffusion in dilute polymer solutions is studied by reverse nonequilibrium molecular dynamics. The polymers are represented by a generic bead-spring model. The influence of the solvent quality on the Soret coefficient is investigated. At constant temperature and monomer fraction, a better solvent quality causes a higher affinity for the polymer to the cold region. This may even go to thermal-diffusion-induced phase separation. The sign of the Soret coefficient changes in a symmetric nonideal binary Lennard-Jones solution when the solvent quality switches from good to poor. The known independence of the thermal diffusion coefficients of the molecular weight is reproduced for three groups of polymers with different chain stiffnesses. The thermal diffusion coefficients reach constant values at chain lengths of around two to three times the persistence length. Moreover, rigid polymers have higher Soret coefficients and thermal diffusion coefficients than more flexible polymers.  相似文献   

19.
《Fluid Phase Equilibria》1987,32(3):249-260
Molar excess enthalpies HE of cis-decalin + benzene, +toluene, +isooctane and +heptane mixtures have been measured by an LKB flow microcalorimeter at 298.15 K. The experimental results are analyzed using the Flory-Patterson-Prigogine theory. The isomer effect of decalin molecule and the effect of the molecular size and shape of the component molecules are discussed.  相似文献   

20.
《Chemical physics》2005,318(3):171-179
In this paper, we investigate the dependence of thermal diffusion factor and thermal conductivity to the temperature, density and mole fraction in Lennard–Jones binary mixtures of isotopes, noble gases and SF6–noble gases by non-equilibrium molecular dynamics simulations.The results for the isotopic mixtures indicated that the density has a crucial effect on the dependence of thermal diffusion factor on the temperature. For isotope system at low density, thermal diffusion factor increased with temperature then remains constant at higher temperatures and the slope of thermal diffusion factor vs. temperature is positive while at higher density, thermal diffusion factor decreased with temperature and then fluctuate. For noble gas mixtures, thermal diffusion factor reduces with increasing of temperature and remain constant at high temperatures. For SF6–Ar system, thermal diffusion factor has a negative slope and reduced with increasing of temperature, but remain nearly constant at high temperatures. For Xe–SF6 thermal diffusion factor changed sign and the slope of thermal diffusion factor vs. temperature was negative. The results also show that thermal conductivity increases with temperature for all systems.The dependence of thermal diffusion factor to mole fraction of heavier component also investigated. The inverse of thermal diffusion factor versus mole fraction of heavier component is linear for isotope mixtures at thermodynamic conditions: (a) Low temperature, large mass ratio and all densities. (b) High temperature, large mass ratio and low densities. For Ne–Kr mixture, the inverse of thermal diffusion factor shows a linear dependence to the mole fraction of heavier component in moderate temperatures and all densities. For SF6–Ar and Xe–SF6 mixtures, the inverse of thermal diffusion factor has linear behaviour at moderate temperatures and low density and high temperature and low density, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号