首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Individual transfer ribonucleic acids (tRNAs) in a complex mixture can be identified by the matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) detection of their signature digestion products. Signature digestion products are endonuclease digestion products whose mass-to-charge value is unique thus corresponding to only a single tRNA. To improve the effectiveness of this approach, we have expanded the applicable endonucleases and examined the use of multiple endonucleases for tRNA identification. The purine specific endonucleases RNase T1 and RNase TA generate the largest number of predicted signature digestion products. Experimentally, MALDI-MS analysis of endonuclease digests from Escherichia coli and Bacillus subtilis finds that any two endonucleases used in combination increases tRNA identification by about 25% over the number identified with a single endonuclease. Using three endonucleases, RNase T1, RNase A, and RNase TA, further improves the number of tRNAs identified by 10–15% over those found with two endonucleases. Limitations in the MALDI-MS approach for complex mixtures were revealed in this study, suggesting that the direct MALDI-MS analysis of signature digestion products is more effective for organisms having 30 or less unique tRNAs. Figure Signature digestion products for tRNACys  相似文献   

2.
3.
While surfactants are commonly used in preparing protein samples, their presence in a protein sample can potentially affect the enzymatic digestion process and the subsequent analysis of the resulting peptides by mass spectrometry. The extent of the tolerance of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) to surfactant interference in peptide analysis is very much dependent on the matrix/sample preparation method. In this work the effects of four commonly used surfactants, namely n-octyl glucoside (OG), Triton X-100 (TX-100), 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) and sodium dodecyl sulfate (SDS), for biological sample preparation on trypsin digestion and MALDI-MS of the resulting digest are examined in detail within the context of using a two-layer method for MALDI matrix/sample preparation. Non-ionic and mild surfactants, such as OG, TX-100 or CHAPS, are found to have no significant effect on trypsin digestion with surfactant concentrations up to 1%. However, TX-100 and CHAPS interfere with the subsequent peptide analysis by MALDI-MS and should be removed prior to peptide analysis. OG is an MS-friendly surfactant and no effect is observed for MALDI peptide analysis. The effect of SDS on trypsin digestion in terms of the number of peptides generated and the overall protein sequence coverage by these peptides is found to be protein dependent. The use of SDS to solubilize hydrophobic membrane proteins, followed by trypsin digestion in the presence of 0.1% SDS, results in a peptide mixture that can be analyzed directly by MALDI-MS. These peptides are shown to provide better sequence coverage compared with those obtained without the use of SDS in the case of bacteriorhodopsin, a very hydrophobic transmembrane protein. This work illustrates that MALDI-MS with the two-layer sample preparation method can be used for direct analysis of protein digests with no or minimum sample cleanup after proteins are digested in a solution containing surfactants.  相似文献   

4.
A simple method for microorganism identification is proposed in this paper. In this method, no isolation or fractionation of microorganisms and no special search algorithm or database are needed. Experimentally, a sample of the unfractionated intact microorganism is subjected to brief on-slide proteolytic digestion and the digestion product ions detected in matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) are selected for tandem mass spectrometry (MS/MS). Database searching using the MS/MS spectrum identifies the microorganism protein, and thereby, according to the source of the protein, the microorganism. The method was demonstrated to be feasible with enterobacteriophage MS2 as the model microorganism. The novel method is simple, rapid, and requires a small quantity of sample.  相似文献   

5.
6.
Matrix-assisted laser desorption/ionization mass spectrometry is a powerful analytical tool for the structural characterization of oligonucleotides and nucleic acids. Here we report the application of stable isotope labeling for the simplified characterization of ribonucleic acids (RNAs). An (18)O label is incorporated at the 3'-phosphate of oligoribonucleotides during the enzymatic processing of intact RNAs. As implemented, a buffer solution containing a 50 : 50 mixture of H(2)O and (18)O-labeled H(2)O is used during endonuclease digestion. Upon digestion, characteristic doublets representative of the isotopic distribution of oxygen are noted for those products that contain 3'-phosphate groups. This approach is used to distinguish readily endonuclease digestion products from incomplete digestion products and non-specific cleavage products. In addition, RNase digestion products containing the characteristic isotopic doublet can be selected for further characterization by post-source decay (PSD) analysis. PSD products carrying the 3'-phosphate group will appear as a doublet, thereby simplifying fragment ion assignment.  相似文献   

7.
Structural information on 'AGE-peptides,' a class of substances belonging to advanced glycation end products (AGE) and originating by proteolysis of glycated proteins, was gained through various analytical approaches on the mixture produced by proteinase K digestion of in vitro glycated bovine serum albumin. Both matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) and high-performance liquid chromatography/electrospray ionization mass spectrometry (HPLC/ESI-MS) were employed, and the results were compared with those from conventional spectroscopic methods (UV, fluorescence, gel permeation). The data acquired by the various techniques all depict the digestion mixtures as highly complex, with components exhibiting molecular mass in the range 300-3500 Da. In the analysis of HPLC/ESI-MS data, identification of AGE-peptides was facilitated by 3D mapping. Structural information was gained by means of multiple mass spectrometric experiments.  相似文献   

8.
The characterization of glycosylation in proteins by mass spectrometry (MS) is often impeded by strong suppression of ionization of glycopeptides in the presence of non-glycosylated peptides. Glycopeptides with a large carbohydrate part and a short peptide backbone are particularly affected by this problem. To meet the goal of generating mass spectra exhibiting glycopeptide coverages as complete as possible, derivatization of glycopeptides offers a practical way to increase their ionization yield. This paper investigated derivatization with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) which is a rapid labeling technique commonly used for fluorescence detection in high-performance liquid chromatography (HPLC) and capillary electrophoresis (CE). As test samples we used peptides and glycopeptides obtained by enzymatic digestion of three different glycoproteins, i.e., human antithrombin, chicken ovalbumin, and bovine alpha1-acid-glycoprotein. It was found that AQC derivatization resulted in strongly increased signal intensities when analyzing small peptides and glycopeptides by matrix-assisted laser desorption/ionization (MALDI)-MS. For these compounds the limit of detection could be reduced to low fmol amounts. Without derivatization only glycopeptides containing large peptide backbones were detected by MALDI-MS. This effect was even significant when glycopeptides were pre-separated and enriched by means of lectin affinity chromatography before MALDI-MS analysis and when using electrospray ionization (ESI). This labeling method, applied in combination with MS detection for the first time, was found to be well suited for the enhancement of detection sensitivity for small glycopeptides in MALDI-MS analysis and thus for reducing the need for pre-separation steps.  相似文献   

9.
Recently, we developed a method for modified ribonucleic acid (RNA) analysis based on the comparative analysis of RNA digests (CARD). Within this CARD approach, sequence or modification differences between two samples are identified through differential isotopic labeling of two samples. Components present in both samples will each be labeled, yielding doublets in the CARD mass spectrum. Components unique to only one sample should be detected as singlets. A limitation of the prior singlet identification strategy occurs when the two samples contain components of unique sequence but identical base composition. At the first stage of mass spectrometry, these sequence isomers cannot be differentiated and would appear as doublets rather than singlets. However, underlying sequence differences should be detectable by collision‐induced dissociation tandem mass spectrometry (CID MS/MS), as y‐type product ions will retain the original enzymatically incorporated isotope label. Here, we determine appropriate instrumental conditions that enable CID MS/MS of isotopically labeled ribonuclease T1 (RNase T1) digestion products such that the original isotope label is maintained in the product ion mass spectrum. Next, we demonstrate how y‐type product ions can be used to differentiate singlets and doublets from isomer sequences. We were then able to extend the utility of this approach by using CID MS/MS for the confirmation of an expected RNase T1 digestion product within the CARD analysis of an Escherichia coli mutant strain even in the presence of interfering and overlapping digestion products from other transfer RNAs. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
11.
A glass-chip-based sample preparation method for matrix-assisted laser desorption/ionization mass spectrometric (MALDI-MS) analysis of tryptic digests of proteins and intact cells is described. A MALDI matrix, 2,5-dihydroxybenzoic acid (2,5-DHB), was hybridized with sol-gels to generate a sol-gel-derived material. Taking advantage of the characteristics of sol-gels, the sol-gel-derived material readily adhered to the surface of a glass chip through covalent bonding. Only one step of sample preparation, deposition of the sample solution on the glass chip, was required before MALDI-MS analysis. Because 2,5-DHB was homogeneously dispersed on the sol-gel network structure, good spot-to-spot reproducibility was obtained in MALDI analysis using this approach and the analyte signals were uniform throughout the chip. The modified glass chips were robust and effective for at least 1 week. This glass-chip-based matrix preparation method provides a straightforward approach to developing techniques for analyzing the on-chip enzymatic digestion of proteins and intact cells of microorganisms. Cytochrome C and Escherichia coli were used as analytes to demonstrate the feasibility of this approach. The products of the on-chip enzymatic digests were identified through protein database searches.  相似文献   

12.
小型微波谐振腔用于蛋白质微波辅助酶解   总被引:2,自引:0,他引:2  
采用微波谐振腔对细胞色素c以及牛血清白蛋白进行微波辅助酶解, 通过电喷雾三级四极杆质谱对得到的肽段进行分析, 证明该方法可用很低的微波功率将蛋白质彻底酶解为多肽. 通过调整微波条件可以使蛋白质的酶解效率基本达到100%, 细胞色素c和牛血清白蛋白的序列覆盖率分别为45%和26%. 该方法不但可将蛋白酶解时间由传统方法的16 h缩短为20 min, 还将功率由使用微波炉时的数百瓦降至20 W.  相似文献   

13.
Direct matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOFMS) analysis of a mixture of tryptic peptides was used to verify the gene-derived amino acid sequence of the high molecular weight (HMW) subunit 1Dx2 of bread wheat. Analysis of the digest was performed by recording several MALDI mass spectra of the mixture at low, medium and high mass ranges, and optimising the matrix and the acquisition parameters for each mass range. This resulted in coverage of the whole sequence except for a short fragment T3 (3 amino acids), which was not detected. It also allowed the insertion of a Pro residue in position 59 to be identified. The results obtained provide evidence for the lack of a substantial level of glycosylation or other post-translational modifications of subunit 1Dx2, and demonstrate that MALDI-MS is the most useful method presently available for the direct verification of the gene-derived sequences of HMW glutenin subunits and similar proteins.  相似文献   

14.
Thin-layer chromatography (TLC) and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) were combined to achieve characterization of polyether mixtures. Three polyethers, polyethylene glycol (PEG), polypropylene glycol (PPG) and polytetramethylene glycol (PTMG), or mixtures of these compounds, were studied. One shortcoming of mixture analysis of synthetic polymers using MALDI-MS is that individual polymers in the mixture may display different detection sensitivities. For example, the MALDI mass spectrum of an equimolar mixture of PEG, PPG and PTMG displayed a high intensity of PPG ions, while no PTMG ions were detectable; however, PTMG ions were detected after the mixture had been separated by TLC. This combined TLC and MALDI-MS analysis of a PPG polymer bearing reactive epoxy groups showed that the polymer contained byproducts with different end-groups. These byproducts were identified as chloro-substituted polymers formed during polymer synthesis. Our study shows TLC to be a rapid and low-cost separation technique, and that it can be combined with MALDI-MS to achieve effective analysis of synthetic polymers.  相似文献   

15.
A simple, rapid, straightforward and washing/separation free of in-solution digestion method for microwave-assisted tryptic digestion of proteins (cytochrome c, lysozyme and myoglobin) using bare TiO(2) nanoparticles (NPs) prepared in aqueous solution to serve as multifunctional nanoprobes in electrospray ionization mass spectrometry (ESI-MS) was demonstrated. The current approach is termed as 'on particle ionization/enrichment (OPIE)' and it can be applied in ESI-MS, atmospheric pressure-matrix-assisted laser desorption/ionization mass spectrometry (AP-MALDI-MS) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). The bare TiO(2) NPs can assist, accelerate and effectively enhance the digestion efficiency, sequence coverage and detection sensitivity of peptides for the microwave-assisted tryptic digestion of proteins in ESI-MS. The reason is attributed to the fact that proteins or partially digested proteins are easily attracted or concentrated onto the surface of TiO(2) NPs, resulting in higher efficiency of digestion reactions in the microwave experiments. Besides, the TiO(2) NPs could act as a microwave absorber to accelerate and enrich the protein fragments in a short period of time (40-60 s) from the microwave experiments in ESI-MS. Furthermore, the bare TiO(2) NPs prepared in aqueous solution exhibit high adsorption capability toward the protein fragments (peptides); thus, the OPIE approach for detecting the digested protein fragments via ESI and MALDI ionization could be achieved. The current technique is also a washing and separation-free technique for accelerating and enriching microwave-assisted tryptic digestion of proteins in the ESI-MS and MALDI-MS. It exhibits potential to be widely applied to biotechnology and proteome research in the near future.  相似文献   

16.
A new instrumental concept for extraction of nanovolumes from open microchannels (dimensions 150 μm?×?50 μm, length 10 mm) manufactured on silicon microchips has been used in combination with a previously developed method for preconcentrating proteins and peptides in the open channels through electromigration. The extracted nanovolumes were further analyzed using nanoelectrospray ionization (nESI) or matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) directly or with subsequent enzymatic protein digestion in a nanodroplet prior to the MS analysis. Preconcentration of the samples resulted in a 15-fold sensitivity increase in nESI for a neurotensin solution, and using MALDI-MS, amyloid beta (Aβ) peptides could be detected in concentrations down to 1 nM. The method was also successfully applied for detection of cell culture Aβ.  相似文献   

17.
An integrated analytical strategy for enrichment, detection and sequencing of phosphorylated peptides by matrix-assisted laser desorption/ionization (MALDI) tandem mass spectrometry (MS/MS) is reported. o-Phosphoric acid was found to enhance phosphopeptide ion signals in MALDI-MS when used as the acid dopant in 2,5-dihydroxybenzoic acid (2,5-DHB) matrix. The effect was largest for multiply phosphorylated peptides, which exhibited an up to ten-fold increase in ion intensity as compared with standard sample preparation methods. The enhanced phosphopeptide response was observed during MALDI-MS analysis of several peptide mixtures derived by proteolytic digestion of phosphoproteins. Furthermore, the mixture of 2,5-DHB and o-phosphoric acid was an excellent eluant for immobilized metal affinity chromatography (IMAC). Singly and multiply phosphorylated peptide species were efficiently recovered from Fe(III)-IMAC columns, reducing sample handling for phosphopeptide mapping by MALDI-MS and subsequent phosphopeptide sequencing by MALDI-MS/MS. The enhanced response of phosphopeptide ions in MALDI facilitates MS/MS of large (>3 kDa) multiply phosphorylated peptide species and reduces the amount of analyte needed for complete characterization of phosphoproteins.  相似文献   

18.
A method for de novo sequencing of N(α)-blocked proteins by mass spectrometry (MS) is presented. The approach consists of enzymatic digestion of N(α)-blocked protein, recovery of N-terminal peptide by depletion of non-N-terminal peptides from the digest pool, and selective derivatization of a C-terminal α-carboxyl group of isolated N-terminal peptide. The C-terminal α-carboxyl group of the N-terminal peptide was selectively derivatized with 3-aminopropyl-tris(2,4,6-trimethoxyphenyl)phosphonium bromide (TMPP-propylamine), according to oxazolone chemistry. The reagent TMPP-propylamine was designed to facilitate sequence analysis with MALDI-MS by mass- and charge-tagging. All of the identities and N-terminal sequences of two N(α)-acetylated proteins (rabbit phosphorylase b and bovine calmodulin) and human orexin A, which has pyroglutamic acid at the N-terminus, were successfully analyzed by allowing for the y-type ions almost exclusively.  相似文献   

19.
Analysis of tryptic digests of proteins using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry commonly results in superior detection of arginine-containing peptides compared with lysine-containing counterparts. The effect is attributable in part to the greater stability of the arginine-containing peptide ions associated with the sequestration of the single ionizing proton on the arginine side-chain. Reaction of peptides with O-methylisourea resulted in conversion of lysine to homoarginine residues with consequent improved detection during MALDI-MS. Analysis of the underivatized tryptic digest of the yeast protein, enolase, revealed peptides representing 20% of the protein; the corresponding figure after derivatization was 46%.  相似文献   

20.
This paper describes a matrix-free method for performing desorption/ionization directly from mesoporous nanocrystalline titania sol-gel thin films, which have good absorption capacity in the ultraviolet (UV) range and can act as assisting materials during UV matrix-assisted laser desorption/ionization mass spectrometric (MALDI-MS) analysis. A high concentration of citrate buffer was added into this system to provide the proton source and to reduce the presence of alkali cation adducts of the analytes. The analyte signals appear uniformly over the whole sample deposition area. Protonated molecules (MH(+) ions) of analytes dominate the titania MALDI mass spectra. Surfactants, peptides, tryptic digest products, and small proteins with molecular weights below ca. 24 000 Da, are observed in the titania MALDI mass spectra. Detection limits for insulin are as low as ca. 2 fmol with mass resolution of ca. 660.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号