首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Characterization of self-assembled monolayers of thiols on Au(111)   总被引:1,自引:0,他引:1  
Self-assembled monolayers (SAMs) of n-butanethiol, n-dodecanethiol and their equimolar mixture on Au(111) were prepared and characterized by ellipsometry, contact angle measurement, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Results revealed that these SAMs are oriented ultrathin films with the thickness of nanometer scale, and the SAMs were influenced by the molecular chain length, the lattice orientation and cleanliness of the substrates. The surface of the longer chain SAM is hydrophobic. The thicknesses of three SAMs of n-butanethiol, n-dodecanethiol and their mixture revealed by ellipsometry and XPS are about 0.59 - 0.67nm, 1.60- 1.69 nm and 1.23 - 1.32nm, respectively. AFM images further demonstrated that the SAM formed by the mixture has some microdomains with two different thicknesses.  相似文献   

2.
In this work, copper and tungsten were sputtered onto silicon wafers by direct current magnetron sputtering (DCMS) and high-power impulse magnetron sputtering (HiPIMS). The resulting films were characterized by energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM), spectroscopic ellipsometry (SE), and X-ray diffraction (XRD). By EDX and XPS, all the sputtered films showed only the expected metal peaks. By XPS, the surfaces sputtered by DCMS were richer in oxygen than those produced by HiPIMS. By AFM, the surfaces were quite smooth. The root mean square (RMS) roughness values are as follows: 0.83 nm (W, HiPIMS), 1.10 nm (W, DCMS), 0.85 nm (Cu, HiPIMS), and 1.78 nm (Cu, DCMS). By SEM, the HiPIMS films exhibited smaller grain sizes, which was confirmed by XRD. The crystallite sizes estimated by XRD are as follows: 4 nm (W, body-centered cubic, HiPIMS), 13 nm (W, body-centered cubic, DCMS), 7 nm (W, cubic, HiPIMS), 14 nm (W, cubic, DCMS), 25 nm (Cu, HiPIMS), and 35 nm (Cu, DCMS). By SE, the HiPIMS surfaces showed higher refractive indices, which suggested that they were denser and less oxidized than the DCMS surfaces.  相似文献   

3.
Patterned surface modification of poly(dimethylsiloxane) (PDMS) is achieved by combining ultraviolet-initiated graft polymerization (UV-GP) and photolithography. Poly(acrylic acid) (PAA) and poly(methacrylic acid) (PMAA) patterns were grafted onto PDMS with micrometer-scale feature edge resolution. The morphology and chemical composition of the grafted layers were assessed by optical and atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and XPS imaging. AFM section analyses demonstrated the deposition of 33 +/- 1 and 62 +/- 8 nm thick patterned films of PAA and PMAA, respectively. Spatially resolved C 1s XPS provided images of carboxylic acid functionalities, verifying the patterned deposition of acrylate films on PDMS. These observations demonstrate the general usefulness of UV-GP and photolithography for micropatterning.  相似文献   

4.
Silane coupling agents are commonly used to activate surfaces for subsequent immobilization of biomolecules. The homogeneity and surface morphology of silane films is important for controlling the structural order of immobilized single-stranded DNA probes based on oligonucleotides. The surfaces of silicon wafers and glass slides with covalently attached 3-glycidoxypropyltrimethoxysilane (GOPS) have been characterized by using angularly dependent X-ray photoelectron spectroscopy (XPS), time-of-flight secondary-ion mass spectrometry (ToF–SIMS), atomic force microscopy (AFM), scanning electron microscopy (SEM), and monochromatic and spectroscopic ellipsometry. XPS and ToF–SIMS data provided evidence of complete surface coverage by GOPS. Data from angularly resolved XPS and ellipsometry methods suggested that the GOPS films were of monolayer thickness. AFM and SEM data indicated the presence of films that consisted of nodules approximately 50–100 nm in diameter. Modeling suggested that the nodules may lead to a nanoscale structural morphology that might influence the hybridization kinetics and thermodynamics of immobilized oligonucleotides.  相似文献   

5.
Polysilicon Microelectromechanical systems (MEMS) are the subject of intensive researches. Surface chemistry and topography of a MEMS test structure fabricated at Sandia National Laboratory, USA, were studied by means of scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and atom-ic force microscopy(AFM). XPS C1, and Si2p spectra from the polysilicon components, silicon nitride sub-strate and a reference silicon wafer were compared. The results confirm the presence of a self-assembled monolayer (SAM) on the MEMS surface. An island-like morphology was found on both polysilicon and sili-con nitride surfaces of the MEMS. The islands take the form of caps, being up to 0. 5 μm in diameter and 20 nm in height. It is concluded that the co-existence of columnar growth and equiaxed growth during the low pressure chemical vapor deposition(LPCVD) of these layers leads to the observed morphology and the is-lands are caps to the columnar structures.  相似文献   

6.
The adsorption of phenylphosphonic acid (PPA) on GaAs (100) surfaces from solutions in acetonitrile/water mixtures was studied using Fourier transform infrared spectroscopy in attenuated total reflection in multiple internal reflections (ATR/MIR), X-ray photoelectron spectroscopy (XPS), high-resolution electron energy loss spectroscopy (HREELS), and atomic force microscopy (AFM). ATR/MIR in situ showed that the accumulation of PPA molecules near the GaAs surface increased with the water concentration in the solution. For water contents lower than 4%, ATR/MIR and XPS results are consistent with the formation of a low-density monolayer. A mechanism is proposed for H2O percentages lower than 4% involving the creation of interfacial bonds through a Br?nsted acid-base reaction, which involves the surface hydroxyl groups most probably bound to Ga. It was found that the morphology of the final layer depended strongly on the water concentration in the adsorbing solution. For water concentrations equal to or higher than 5%, the amount of adsorbed molecules drastically increased and was accompanied by modifications in the infrared spectral region corresponding to P-O and P=O. This sudden change indicates a deprotonation of the acid. XPS studies revealed the presence of extra oxygen atoms as well as gallium species in the layer, leading to the conclusion that phosphonate and hydrogenophosphonate ions are present in the PPA layer intercalated with H3O+ and Ga3+ ions. This mechanism enables the formation of layers approximately 10 times thicker than those obtained with lower H2O percentages. HREELS indicated that the surface is composed of regions covered by PPA layers and uncovered regions, but the uncovered regions disappeared for water contents equal to or higher than 5%. XPS results are interpreted using a model consisting of a monolayer partially covering the surface and a thick layer. This model is consistent with AFM images revealing roughness on the order of 7 nm for the thick layer and 0.2-0.5 nm for the thin layer. Sonication proves to be an effective method for reducing layer thickness.  相似文献   

7.
The surface structure of very thin (15–20 nm) spin-coated films of a symmetrical poly(styrene-b-methyl-methacrylate) block copolymer on silicon and mica is analyzed by atomic force microscopy (AFM). The films show a surface corrugation of a very regular 100 nm lateral periodicity and 6–8 nm amplitude. Film thickness is measured by AFM at induced film defects and checked by ellipsometry. XPS shows that both blocks are at the film surface. Selective degradation of the methyl methacrylate block is used for contrast enhancement and allows to assign poly(styrene) to the elevated surface regions and poly(methyl methacrylate) to the substrate/film interface.Friction interactions of the AFM tip with the film surface may be used to induce high orientational ordering of the morphological pattern perpendicular to the fast scan direction.  相似文献   

8.
The adsorption of poly(tert-butylmethacrylate)-block-poly(2-(dimethylamino-ethyl) methacrylate) (PtBUMA-b-PDMAEMA) was studied by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) analysis performed on dried samples. The copolymer was dissolved in toluene at concentrations below (0.01 wt%) and above (0.05 and 1 wt%) the CMC; silicon (SiOH) and CH(3)-grafted silicon (SiCH(3)) were used as substrates. Whatever the concentration and the substrate, a layer of individual copolymer molecules, 1.5-3 nm thick, formed rapidly. The adsorbed amount was slightly higher and the resistance to AFM tip scraping was stronger on SiOH than on SiCH(3). This is attributed to hydrogen bonding between the PDMAEMA block and the OH groups of the silicon surface, leading to polarization of the adsorbed layer. Above the CMC, on SiOH, randomly scattered dot-like features (about 5 nm high) observed by AFM were attributed to individual micelles, which were not displaced by drying. On SiCH(3), the particles found on the top of the adsorbed layer were micelle aggregates, about 50 nm thick, the lateral size of which was strongly influenced by the rate of drying. This further difference between SiCH(3) and SiOH is tentatively attributed to the exposure of PDMAEMA by the adsorbed layer formed on SiCH(3), while only PtBUMA would be exposed by the layer adsorbed on SiOH. The red blood cell shape and the size of the micelles observed in single layers indicate that the PtBUMA corona was not made compact as a result of drying.  相似文献   

9.
A simple and inexpensive method to exfoliate boron nitride powder to form boron nitride nanosheets (BNNSs) with few layers was achieved by using a physically thermal process. The obtained BNNSs were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), atomic force microscopy (AFM), X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS), IR spectroscopy, and Raman spectroscopy. The size distribution of the sheets and average sheet size is in the range of 80–380 nm and 200±62 nm, respectively, and the pure phase h‐BN products were confirmed. XPS result showed the B/N atomic ratio to be 0.99. In addition, the BNNSs can well disperse in aqueous solution to form a cloudy suspension and importantly, can remain suspended for 1 month without precipitate, which would have good potential in a wide range of applications.  相似文献   

10.
Substrates of aluminum (Al) deposited by physical vapor deposition onto Si substrates and then chemically reacted with perfluorodecylphosphonic acid (PFDPAlSi), decylphosphonic acid (DPAlSi), and octadecylphosphonic acid (ODPAlSi) were studied by x-ray photoelectron spectroscopy (XPS), contact angle measurements, atomic force microscopy (AFM), and friction force microscopy, a derivative of AFM, to characterize their surface chemical composition, roughness, and micro-/nanotribological properties. XPS analysis confirmed the presence of perfluorinated and nonperfluorinated alkylphosphonate molecules on the PFDPAlSi, DPAlSi, and ODPAlSi. The sessile drop static contact angle of pure water on PFDPAlSi was typically more than 130 degrees and on DPAlSi and ODPAlSi typically more than 125 degrees indicating that all phosphonic acid reacted AlSi samples were very hydrophobic. The surface roughness for PFDPAlSi, DPAlSi, ODPAlSi, and bare AlSi was approximately 35 nm as determined by AFM. The surface energy for PFDPAlSi was determined to be approximately 11 mNm by the Zisman plot method compared to 21 and 20 mNm for DPAlSi and ODPAlSi, respectively. Tribology involves the measure of lateral forces due to friction and adhesion between two surfaces. Friction, adhesion, and wear play important roles in the performance of micro-/nanoelectromechanical systems. PFDPAlSi gave the lowest adhesion and coefficient of friction values while bare AlSi gave the highest. The adhesion and coefficient of friction values for DPAlSi and ODPAlSi were comparable.  相似文献   

11.
An ordered cyclopallated thiophene imine self-assembly monolayer(Si@Pd3TI) was designed and fabricated. It was characterized by water contact angle(WCA), ultraviolet-visible spectroscopy(UV), cyclic voltammetry(CV), infrared(IR) spectrum, atomic force microscopy(AFM) and X-ray photoelectron spectroscopy(XPS). Its ca-talytic performance for Suzuki coupling reaction and catalytic mechanism were systematic investigated. Si@Pd3TI was validated as a heterogeneous catalyst identified by poisoning tests, hot filtration test and three-phase test. The heterogeneous catalytic mechanism was investigated by WCA, UV, Raman spectrum(RS), AFM, XPS and density functional theory(DFT). The catalytic mechanism proceeded via surface-catalysis process, on which the Pd(II)/Pd(I)/Pd(0) synergistic active center acted likely as "multimetallic cluster". It played a great role for cataly-zing coupling reaction, in which the real active species was Pd(I).  相似文献   

12.
The plasma oxidation process of highly oriented pyrolytic graphite (HOPG) has been investigated through a combination of multiscale (micrometric to atomic) imaging by atomic force and scanning tunneling microscopies (AFM/STM) and STM tip-scratching of the HOPG substrate. Complementary information was obtained by Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). Repetitive imaging of the same HOPG location following a series of consecutive plasma treatments allowed an accurate determination of the plasma etch rates along both the a and c crystallographic directions of the graphite lattice. The etch rates were typically in the range of a few nm per min along the a axis, and the equivalent of 1-6 graphene layers per min along the c axis. The results pointed to the existence of two main plasma etching regimes, related to short (<20-30 min) and long (> or =30 min) treatment times. This was inferred not only from the measured plasma etch rates but also from the observation of fundamental differences in the atomic-scale surface structure of the plasma-treated HOPG samples, and from the general mechanical behavior of the materials under the action of the AFM tip. In particular, atomic-scale STM imaging suggested a change from a defected, but essentially graphitic, surface in the first regime to an amorphous carbon surface in the second regime. Together with AFM and STM, Raman spectroscopy and XPS provided a consistent picture of the surface structure and chemistry of the plasma-modified HOPG in the two regimes. The implications of these results as well as the possible mechanism that drives the plasma etching process in the two regimes are discussed.  相似文献   

13.
Ablation and water etching of high density polyethylene (PE) exposed to Ar plasma for 240 s at 8.3 W power were studied. Gravimetry was used to determine the ablated and etched layer thicknesses. The surface topography and roughness were observed via AFM. The chemical composition and structure of modified surface layer were studied by FTIR, XPS, RBS, and EPR techniques. It was found that under the experimental conditions ca. 30 nm thick layer is ablated, the surface topography changes dramatically and surface roughness increases. The cleavage of macromolecular chains is proved by the presence of surface free radicals. Oxygen containing groups known to enhance surface solubility are detected. Under present laboratory conditions ca. 20 nm thick surface layer is dissolved during 24 h. After water dissolution of the surface, the roughness increases.  相似文献   

14.
In this paper, a single-step room-temperature biosynthetic route for producing gold nanostructures using pear fruit is reported. The alkaline conditions of the pear fruit extract induced gold nanoparticles with plate-like morphologies. Successfully biosynthesized triangular and hexagonal nanoplates were observed, elegantly assembled with hexagonal gold nanoparticles. Nanostructure size, crystal nature, purity and morphologies were characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM), X-ray diffraction (XRD), X-ray photoemission spectroscopy (XPS) and energy dispersive X-ray analysis (EDAX). The edge lengths of the nanostructures ranged from 200 to 500 nm. Using AFM analysis, the nanohexagons were observed to have a thickness ranging from 12 to 20 nm. The XRD patterns showed a (1 1 1) preferential orientation of the nanostructures. The XPS and EDAX analysis also confirmed the presence of pure-phase Au without any substantial impurities. The preparation of nanostructured gold particles using pear fruit provides an environmentally friendly option, as compared to currently available chemical and/or physical methods.  相似文献   

15.
We synthesized various graft copolymer films of poly(ethylene glycol) methacrylate (PEGMA) and methyl methacrylate (MMA) on silicon to examine the dependency of protein-surface interactions on grafting composition. We optimized atom transfer radical polymerizations to achieve film thicknesses from 25 to 100 nm depending on the monomer mole fractions, and analyzed the resulting surfaces by X-ray photoelectron spectroscopy (XPS), ellipsometry, contact angle measurements, and atomic force microscopy (AFM). As determined by XPS, the stoichiometric ratios of copolymer graftings correlated with the concentrations of provided monomer solutions. However, we found an unexpected and pronounced hydrophobic domain on copolymer films with a molar amount of 10-40% PEGMA, as indicated by advancing contact angles of up to 90 degrees . Nevertheless, a breakdown of the protein-repelling character was only observed for a fraction of 15% PEGMA and lower, far in the hydrophobic domain. Investigation of the structural basis of this exceptional wettability by high-resolution AFM demonstrated the independence of this property from morphological features.  相似文献   

16.
The wetting of two different model cellulose surfaces has been studied; a regenerated cellulose (RG) surface prepared by spin-coating, and a novel multilayer film of poly(ethyleneimine) and a carboxymethylated microfibrillated cellulose (MFC). The cellulose films were characterized in detail using atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). AFM indicates smooth and continuous films on a nanometer scale and the RMS roughness of the RG cellulose and MFC surfaces was determined to be 3 and 6 nm, respectively. The cellulose films were modified by coating with various amounts of an anionic fluorosurfactant, perfluorooctadecanoic acid, or covalently modified with pentadecafluorooctanyl chloride. The fluorinated cellulose films were used to follow the spreading mechanisms of three different oil mixtures. The viscosity and surface tension of the oils were found to be essential parameters governing the spreading kinetics on these surfaces. XPS and dispersive surface energy measurements were made on the cellulose films coated with perfluorooctadecanoic acid. A strong correlation was found between the surface concentration of fluorine, the dispersive surface energy and the contact angle of castor oil on the surface. A dispersive surface energy less than 18 mN/m was required in order for the cellulose surface to be non-wetting (theta e>90 degrees ) by castor oil.  相似文献   

17.
采用离子束溅射技术(IBS)在碳纤维布基底上制备PtRu/C合金薄膜作为燃料电池电极催化材料. 应用XPS、XRD、GIXD、AFM等分析手段研究了PtRu薄膜表面的成分、化学状态、表面形貌以及PtRu薄膜的表层、次表层和体相的结构. 结果表明, 在双束离子沉积过程中, 由于溅射产生的Pt+和Ru+之间的相互作用, 使薄膜表面的化学状态和薄膜表层(15-40 nm范围内)结构发生了变化, 并影响PtRu薄膜的催化性能. 当xPt/xRu=0.64时, PtRu薄膜出现Ru固溶体在表层富集, 并在表层诱发形成Pt39Ru61非晶相.  相似文献   

18.
Que  Wenxiu  Zhou  Y.  Lam  Y.L.  Chan  Y.C.  Kam  C.H. 《Journal of Sol-Gel Science and Technology》2001,20(2):187-195
TiO2/organically modified silane (ORMOSIL) composite materials produced by the sol-gel method were studied for optical waveguide applications. High optical quality waveguiding films on different substrates, including silicon, gallium arsenide, silica/silicon substrates, and microscope glass slides, were prepared from high titanium content (0.2 molar) ÿ-glycidoxypropyltrimethoxysilane at low temperature. Scanning electron microscopy (SEM), atomic force microscopy (AFM), differential thermal analysis (DTA), thermal gravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) have been used to investigate the optical and structural properties of the composite films. The TGA/DTA results showed that the organic compounds in the film would tend to decompose in the temperature range from 200°C to 500°C. SEM and AFM results showed that a dense and porous-free composite material film could be obtained at the heat treatment temperature of 100°C. It was also shown that ORMOSIL is integrated in the glass, providing low shrinkage and high cracking resistance. The propagation loss properties of the composite films were also investigated. About 1.1 dB/cm propagation loss of the planar waveguide film was obtained at the wavelength of 633 nm.  相似文献   

19.
Nanostructured multilayers constituted by alternate metallic (gold) and organic (alkyldithiol) layers, and grafted onto glass or silicon substrates are prepared and analysed. Such complex layers could be of interest as a new type of surfaces but also as localized dissipative zones particularly in the field of adhesion science. The formation and the structure of these model systems are examined using a number of techniques such as atomic force microscopy (AFM), wetting analysis (contact angles), X‐ray photoelectron spectroscopy (XPS) and conductivity measurements. It is shown that, in terms of electrical conductivity, gold layers exhibit a percolation transition from an insulating granular structure to a conductive worm‐like structure at a threshold thickness of about 5 nm. XPS (and wettability) analyses clearly indicate that the fractional coverage of the gold surface is about 30% with alkyldithiol and that these molecules are either grafted in a stand‐up position or in the form of a loop. Moreover, a partial electrical connection between two successive gold layers is observed, confirming that the confined organic layer of alkyldithiol between them is too loosely organized to play the role of an insulating barrier. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
The composite film of nanometer AgO2/silane coupling reagent aminopropyltriethoxy-silane (CH3O)3Si(CH2)3NH2was prepared on single-crystal silicon by the self-assembly of silane on the hydroxylated substrate followed with the deposition of nanometer AgO2 on the silane SAMs from an aqueous Ag2O gel. The resultant composite film was characterized by means of X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). The contact angles of distilled water on the silane SAMs and the composite film were measured to compare the surface states. The experiment shows that the nanometer Ag2O can be easily incorporated in the silane SAMs and lead to changed surface state of the composite film. Nanometer Ag2O crystallites in a size of about 20 nm distribute quite uniformly in the composite film. It was anticipated that the composite film might find application to the protection of single-crystal Si substrate in MEMS devices and also propose a novel single electron device structure based on nanoscale Ag2O colloidal particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号