首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have found that single-chain schizophyllan and curdlan (s-SPG and s-curdlan, respectively) can dissolve as-grown and cut single-walled carbon nanotubes (ag-SWNTs and c-SWNTs, respectively) in aqueous solution. The vis-NIR spectra of the composites suggest that c-SWNTs are dissolved as a bundle, whereas ag-SWNTs exist as one or only a few pieces in the tubular hollow constructed by the helical structure inherent to these beta-1,3-glucans. EDX and CLSM measurements and TEM observation established that the distribution map of these polysaccharides overlaps well with the image of SWNTs, indicating that these two components form a composite. Very interestingly, when c-SWNTs were dissolved with the aid of s-SPG or s-curdlan in water, a clear periodical structure with inclined stripes, as detected by AFM, appeared on the fibrous composite surface. Because this periodical structure has never been recognized for the composites with other water-soluble polymers, one can regard that s-SPG or s-curdlan wraps c-SWNTs constructing a helically twined structure. High-resolution TEM observation of an ag-SWNTs/s-SPG composite gave a clearer image in that two s-SPG chains twine one ag-SWNT and the helical motif is right-handed. When this sample was subjected to the AFM measurement, the composite showed the 2-3 nm height. This height implies that one piece of ag-SWNT is included in the s-SPGs helical structure. As a summary, it has been established that beta-1,3-glucans such as s-SPG and s-curdlan not only dissolve SWNTs but also create a novel superstructure on the surface.  相似文献   

2.
Beta-1,3-glucan polysaccharides have triple-stranded helical structures whose sense and pitch are comparable to those of polynucleotides. We recently revealed that the beta-1,3-glucans could interact with certain polynucleotides to form triple-stranded and helical macromolecular complexes consisting of two polysaccharide-strands and one polynucleotide-strand. This unique property of the beta-1,3-glucans has made it possible to utilize these polysaccharides as potential carriers for various functional polynucleotides. In particular, cell-uptake efficiency of the resultant polysaccharide/polynucleotide complexes was remarkably enhanced when functional groups recognized in a biological system were introduced as pendent groups. The beta-1,3-glucans can also interact with various one-dimensional architectures, such as single-walled carbon nanotubes, to produce unique nanocomposites, in which the single-walled carbon nanotubes are entrapped within the helical superstructure of beta-1,3-glucans. Various conductive polymers and gold nanoparticles are also entrapped within the helical superstructure in a similar manner. In addition, diacetylene monomers entrapped within the helical superstructure can be photo-polymerized to afford the corresponding poly(diacetylene)-nanofibers with a uniform diameter. These findings indicate that the beta-1,3-glucans are very attractive and useful materials not only in biotechnology but also in nanotechnology. These unique properties of the beta-1,3-glucans undoubtedly originate from their inherent, very strong helix-forming character which has never been observed for other polysaccharides.  相似文献   

3.
In this mini review, recent trends and challenges in developing carbon nanotube-based extraction and electrochemical detection of heavy metals in water are reviewed. Carbon nanotubes (CNT) have electrical, mechanical, chemical, and structural properties superior to those of conventional materials, for example graphite and activated carbon. CNT-based procedures are also more efficient than traditional techniques and methods, for example liquid?Cliquid extraction, atomic-absorption spectroscopy, flame photometry, and inductively coupled plasma, because they can enable rapid, sensitive, simple, and low-cost on-site detection. Different forms of CNT, including as-grown, oxidised, and functionalised CNT, can be well suited to metal adsorption. The measurement procedure relies on adsorbing the metal on the CNT surface after reasonable contact time, either by applying an electrical potential or under open-circuit conditions, and subsequent quantification. Different types of CNT-based electrode, including composite, paste, and binder-free, can be fabricated and used for metal detection. Application of CNT and their novel properties to the adsorption and detection of heavy metals is discussed in detail.  相似文献   

4.
Much attention has been focused on exploiting novel strategies for the creation of hierarchical polymer assemblies by the control of the assembling number or the relative location among neighboring polymers. We here propose a novel strategy toward the creation of "hierarchical" single-walled carbon nanotube (SWNT) architectures by utilizing SWNT composites with cationic or anionic complementary semi-artificial beta-1,3-glucans as "building blocks". These beta-1,3-glucans are known to wrap SWNTs helically, to create one-dimensional superstructural composites. If the cationic composite is neutralized by an anionic composite, a well ordered SWNT-based sheet structure was created. Transmission electron microscopy (TEM) observation revealed that this sheet structure is composed of highly-ordered fibrous assemblies of SWNTs. This suggests that the cationic and anionic composites are tightly packed through electrostatic interactions. Moreover, both of the final assembly structures are readily tunable by adjusting the cation/anion ratio. The self-assembling modulation of functional polymers is associated with the progress in ultimate nanotechnologies, thus enabling us to create numerous functional nanomaterials. We believe, therefore, that the present system will extend the frontier of SWNT research to assembly chemistry including "hierarchical" superstructures.  相似文献   

5.
By using the advantages of carbon nanotubes (CNTs), such as their excellent mechanical properties and low density, CNT-reinforced metal matrix composites (MMCs) are expected to overcome the limitations of conventional metal materials, i.e., their high density and low ductility. To understand the behavior of composite materials, it is necessary to observe the behavior at the molecular level and to understand the effect of various factors, such as the radius and content of CNTs. Therefore, in this study, the effect of the CNT radius and content on the mechanical properties of CNT-Al composites was observed using a series of molecular dynamics simulations, particularly focusing on MMCs with a high CNT content and large CNT diameter. The mechanical properties, such as the strength and stiffness, were increased with an increasing CNT radius. As the CNT content increased, the strength and stiffness increased; however, the fracture strain was not affected. The behavior of double-walled carbon nanotubes (DWNTs) and single-walled carbon nanotubes (SWNTs) was compared through the decomposition of the stress–strain curve and observations of the atomic stress field. The fracture strain increased significantly for SWNT-Al as the tensile force was applied in the axial direction of the armchair CNTs. In the case of DWNTs, an early failure was initiated at the inner CNTs. In addition, the change in the elastic modulus according to the CNT content was predicted using the modified rule of mixture. This study is expected to be useful for the design and development of high-performance MMCs reinforced by CNTs.  相似文献   

6.
We describe the formation and permeability of polyelectrolyte multilayer hollow-shell capsules by photo-cross-linking and controlled-release (fluorescence) studies. The hollow shells were prepared by alternate layer-by-layer (LbL) adsorption of photo-cross-linkable benzophenone modified poly(allylamine hydrochloride) and poly(sodium 4-styrenesulfonate) on polystyrene particles, followed by removing the core with tetrahydrofuran. Zeta potential measurements, fourier transform infrared spectroscopy, and transmission electron microscopy were used to verify the LbL process integrity. A model drug, rhodamine B (RB), was successfully loaded into the polyelectrolyte hollow capsules. The release kinetics of RB was investigated using fluorescence spectroscopy. The permeability of RB through the hollow shells was effectively controlled based on UV irradiation time. It was shown that the release of RB molecules can be controlled by the degree of cross-linking induced in the multilayer.  相似文献   

7.
层层组装构筑聚电解质/碳纳米管导电黏附膜   总被引:1,自引:0,他引:1  
首先将聚烯丙基胺盐酸盐与碳纳米管制成复合物(PAH-CNT), 再通过层层组装技术构筑了聚丙烯酸和碳纳米管混合物(PAA-CNT)与PAH-CNT多层复合膜(PAH-CNT/PAA-CNT). PAH-CNT/PAA-CNT多层复合膜同时具有导电和黏附性能. 在玻璃和ITO基片上沉积的PAH-CNT/PAA-CNT多层复合膜的最大拉伸剪切强度接近7 MPa, 即1 cm2的黏附膜可以承受约70 kg的重物. 碳纳米管的引入使PAH-CNT/PAA-CNT多层复合膜具有更好的导电性.  相似文献   

8.
Single-walled carbon nanotubes (SWNTs) and double-walled carbon nanotubes (DWNTs) have been functionalized through the wet-mechanochemical reaction method. Results from the infrared spectrum and zeta potential measurements show that the hydroxyl groups have been introduced onto the treated SWNT and DWNT surfaces. Transmission electron microscope observations revealed that the SWNTs and DWNTs were cut short after being milled. SWNTs and DWNTs with optimized aspect ratio can be obtained by adjusting the ball milling parameters. Thermal conductivity enhancement of water-based nanofluids containing treated carbon nanotubes (CNTs) shows augmentation with the increase of temperature mainly due to the effects of an ordering liquid layer forming around the chemical surfaces of CNTs. Moreover, the thicker interfacial layer of water molecules on the surfaces of CNTs with smaller diameter, such as SWNTs, is in favor of greater thermal conductivity enhancement compared with the thinner one on the surfaces of DWNTs or MWNTs with larger diameter.  相似文献   

9.
An understanding of the growth mechanism of carbon nanotubes (CNTs) is very important for the control of their structures, which in turn will be the basis for their further theoretical studies and applications. On the basis of high-resolution transmission electron microscopy observations of the initial nucleation of CNTs, the following deductions are made: (1) the nucleation of single-walled carbon nanotubes (SWNTs) and double-walled carbon nanotubes (DWNTs) starts at a low-temperature zone in front of the reaction zone; (2) the addition of sulfur results in localized liquid zones on the surface of big catalyst particles as the initial nucleation sites; (3) a temperature gradient is necessary to realize the role of sulfur in the structure of CNTs; and (4) the shell number of CNTs can be changed at the nucleation and growth stages. On the basis of the above, a growth model for the formation of SWNTs and DWNTs is proposed, which might open up the possibility of controlling the structure of CNTs.  相似文献   

10.
We report a general and versatile method for the encapsulation of electrically uncharged organic substance in polymeric capsules by using a layer-by-layer (LbL) approach. Electrical charge was induced on the surface of pyrene (uncharged organic substance) with an amphiphilic surfactant (sodium dodecyl sulfate, SDS) by micellar solubilization. The SDS micellar solution of pyrene in water was then deposited on a flat substrate as well as colloidal particles with chitosan as an oppositely charged polyelectrolyte. Pyrene was used as a model drug because it displayed intrinsic fluorescence that allowed us to monitor LbL growth by fluorescence and under confocal laser scanning microscopy (CLSM). To examine the proof of concept, multilayers were coated on the planar support by the LbL method. UV-vis spectroscopy showed regular growth of each layer deposited. Thin film formation was evidenced by scanning electron microscopy. The LbL method was extended to particles where fluorescence spectroscopy revealed LbL growth and transmission electron microscopy (TEM) provided evidence of particle coating. The quantification of dye in each deposited layer further proved LbL growth. The removal of sacrificial core provided thin capsules. The capsules were characterized by TEM and CLSM. The capsules showed potential as a drug delivery system, which is suggested by the slow release of entrapped dye by concentration-dependent diffusion in isotonic saline solution. The kinetics of desorption of pyrene from this thin film was modeled by a pseudo-second-order model.  相似文献   

11.
Chen G 《Talanta》2007,74(3):326-332
As two important polymorphs of carbon, carbon nanotube (CNT) and diamond have been widely employed as electrode materials for electrochemical sensing. This review focuses on recent advances and the key strategies in the fabrication and application of electrochemical detectors in microchip and conventional capillary electrophoresis (CE) using CNT and boron-doped diamond. The subjects covered include CNT-based electrochemical detectors in microchip CE, CNT-based electrochemical detectors in conventional CE, boron-doped diamond electrochemical detectors in microchip CE, and boron-doped diamond electrochemical detectors in conventional CE. The attractive properties of CNT and boron-doped diamond make them very promising materials for the electrochemical detection in microchip and conventional CE systems and other microfluidic analysis systems.  相似文献   

12.
Here, we report a highly efficient growth of single-walled carbon nanotubes (SWNTs) and double-walled carbon nanotubes (DWNTs) on conducting metal foils. We found that foils made of Ni-based alloys with Cr or Fe serve as excellent substrates for SWNT (DWNT) synthesis. In significant contrast, a CNT grown on Ni, Fe foils contains a significant ratio of MWNTs. This result opens up an economical route for the mass production of SWNT (DWNT) forests and also enables the straightforward integration of CNTs into nanoelectronic devices, such as field emission displays.  相似文献   

13.
Layer‐by‐layer (LbL) assembly technique is applied for the first time for the preparation of nitrogen‐doped carbon capsules. This approach uses colloid silica as template and two polymeric deposition components, that is, poly(ammonium acrylate) and a poly (ionic liquid) poly(3‐cyanomethyl‐1‐vinylimidazolium bromide), which acts as both the carbon precursor and nitrogen source. Nitrogen‐doped carbon capsules are prepared successfully by polymer wrapping, subsequent carbonization and template removal. The as‐synthesized carbon capsules contain ≈7 wt% of nitrogen and have a structured specific surface area of 423 m2 g−1. Their application as supercapacitor has been briefly introduced. This work proves that LbL assembly methodology is available for preparing carbon structures of complex morphology.  相似文献   

14.
采用表面修饰技术将碳纳米管(CNT)表面羧基化, 通过羧基将钨离子基团修饰到碳纳米管的外表面, 再通过原位还原碳化技术, 将钨离子基团还原成碳化钨(WC)纳米微粒, 制备出WC/CNT纳米复合材料. 采用FTIR、XRD、SEM、HRTEM和N2吸附等分析测试手段对样品的形貌、晶相组成和微观结构特征进行了表征. FTIR和N2吸附结果表明, 硝化后, 在碳纳米管表面羧基化的同时比表面积增加; XRD结果表明, WC/CNT样品由碳纳米管、WC以及非化学计量比的氧化钨组成; SEM和HRTEM结果表明, WC纳米颗粒均匀地分散于碳纳米管的外表面,并与碳纳米管构成了复合材料. 采用循环伏安法测试了样品在碱性条件下对甲醇氧化的电催化性能, 结果表明, 复合材料对甲醇氧化的电催性能明显强于WC 和碳纳米管, 并在实验结果的基础上探讨了复合材料催化性能提高的原因.  相似文献   

15.
Carbon nanotubes have been proposed as advanced metal catalyst support for electrocatalysis. In this work, different carbon support materials including single-walled carbon nanotubes (SWNTs), multi-walled carbon nanotubes (MWNTs) and XC-72 carbon black, were compared in terms of their electrochemical properties using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The SWNTs is found to exhibit the highest accessible surface area in electrochemical reactions and the lowest charge transfer resistance at the SWNTs/electrolytes. These carbon materials are then loaded with varying amount of Pt by the electrodeposition technique to prepare carbon supported Pt catalysts. Electrochemical measurements of methanol oxidation reveal that the SWNTs supported Pt catalyst exhibits the highest mass activity (mA/mg-Pt). In comparison with Pt-XC-72 and Pt-MWNTs, the remarkably enhanced electrocatalytic activity of the Pt-SWNTs maybe attributed to a higher dispersion and utilization of the Pt particles, which are directly related to the electrochemical characteristics of SWNTs. The high concentration of oxygen-containing functional groups, high accessible surface area, low charge transfer resistance at the carbon/electrolyte interfaces can be important for the Pt dispersing and strong metal-support interaction in the Pt-SWNTs catalyst.  相似文献   

16.
Zhang H  Wu B  Hu W  Liu Y 《Chemical Society reviews》2011,40(3):1324-1336
Single-walled carbon nanotubes (SWNTs) possess unique electronic properties that make them very promising materials for use in both nano-electronics and thin film devices. However, SWNTs are always produced as a mixture of metallic and semiconducting nanotubes, which is a major roadblock to their widespread application. This tutorial review provides a brief summary of ways of separating single-walled carbon nanotubes into metallic and semiconducting fractions. Various methods including selective growth, selective removal, selective adsorption and band structure modulation--all of which aim to produce pure SWNTs with well-defined electronic properties--are systematically discussed. The main problems in this field, the outlook for separation techniques and some views of future developments are presented.  相似文献   

17.
The properties and applications of CNT have been studied extensively since Iijima discovered them in 1991[1,2]. They have exceptional mechanical properties and unique electrical property, highly chemical stability and large specific surface area. Thus far, they have widely potential applications in many fields. They can be used as reinforcing materials in composites[3], field emissions[4], hydrogen storage[5], nanoelectronic components[6], catalyst supports[7], adsorption material and so on.…  相似文献   

18.
The layer‐by‐layer (LbL) deposition technique is widely used to develop multilayered films based on the directed assembly of complementary materials. In the last decade, thin multilayers prepared by LbL deposition have been applied in biological fields, namely, for cellular encapsulation, due to their versatile processing and tunable properties. Their use was suggested as an alternative approach to overcome the drawbacks of bulk hydrogels, for endocrine cells transplantation or tissue engineering approaches, as effective cytoprotective agents, or as a way to control cell division. Nanostructured multilayered materials are currently used in the nanomodification of the surfaces of single cells and cell aggregates, and are also suitable as coatings for cell‐laden hydrogels or other biomaterials, which may later be transformed to highly permeable hollow capsules. In this Focus Review, we discuss the applications of LbL cell encapsulation in distinct fields, including cell therapy, regenerative medicine, and biotechnological applications. Insights regarding practical aspects required to employ LbL for cell encapsulation are also provided.  相似文献   

19.
Over the last two decades the layer-by-layer (LbL) assembly technique has become a highly versatile platform for the synthesis of nanoengineered thin films and particles. The widespread need for highly functional and responsive materials for applications in biomedicine-such as drug and gene delivery-has recently led to considerable efforts in the assembly of LbL materials, particularly films that can be subsequently stabilised and functionalised through a range of chemistries. In this tutorial review, recent developments in hydrogen-bonded LbL-assembled materials will be discussed, focusing on the design of materials with enhanced stimuli-responsive characteristics. Emphasis will be given to materials engineered for biomedical applications, specifically films/capsules that afford controlled loading and release of therapeutic cargo for application in vitro and in vivo.  相似文献   

20.
从层层组装的核壳粒子到医学/生物化学诊断和药物输送*   总被引:2,自引:0,他引:2  
层层组装的核壳型粒子由于具有尺度和组成的剪裁优点近年来得到了广泛的研究,它们为技术应用如医学/生物化学诊断和药物输送提供了新的机遇.本文综述了基于层层自组装和胶体模板以及采用各种化学和物理方法直接除去核制备磁性复合核壳粒子和空腔球体.给出了核壳粒子在药物输送、生物检测与标记应用的一些实例.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号