首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of rigid or semirigid dicarboxylate anions, terephtalate (TerP(2-)), isophtalate (IsoP(2-)), and phenylenediacetate (PDA(2-)) on the self-condensation process of the [Mo(2)O(2)S(2)](2+) dioxothio cation has been investigated. Three new molybdenum rings, [Mo(12)O(12)S(12)(OH)(12)(TerP)](2-) ([Mo(12)TerP](2-)), [Mo(16)O(16)S(16)(OH)(16)(H(2)O)(4)(PDA)(2)](4-) ([Mo(16)(PDA)(2)](4-)), and [Mo(16)O(16)S(16)(OH)(16)(H(2)O)(2)(IsoP)(2)](4-) ([Mo(16)(IsoP)(2)](4-)) have been isolated and unambiguously characterized in the solid state by single-crystal X-ray studies and in solution by various NMR methods and especially by diffusion-correlated NMR ((1)H DOSY) spectroscopy, which was shown to be a powerful tool for the characterization and speciation of templated molybdenum ring systems in solution. Characterization by FT-IR and elemental analysis are also reported. The dynamic and thermodynamic properties of both the sixteen-membered rings were studied in aqueous medium. Specific and distinct behaviors were revealed for each system. The IsoP(2-)/[Mo(2)O(2)S(2)](2+) system gave rise to equilibrium, involving mono-templated [Mo(12)IsoP](2-) and bis-templated [Mo(16)(IsoP)(2)](4-) ions. Thermodynamic parameters have been determined and showed that the driving-force for the formation of the [Mo(16)(IsoP)(2)](4-) is entropically governed. However, whatever the conditions (temperature, proportion of reactants), the PDA(2-)/[Mo(2)O(2)S(2)](2+) system led only to a single compound, the [Mo(16)(PDA)(2)](4-) ion. The latter exhibits dynamic behavior, consistent with the gliding of both the stacked aromatic groups. Stability and dynamics of both Mo(16) rings was related to weak hydrophobic or pi-pi stacking inter-template interactions and inner hydrogen-bond network occurring within the [Mo(16)(IsoP)(2)](4-) and [Mo(16)(PDA)(2)](4-) ions.  相似文献   

2.
The complex [1-(4′-fluorobenzyl)pyridinium]2[Ni(dto)2] (dto2- means dithiooxalate dianion) has been pre-pared by reaction of Na2[Ni(S2C2O2)2] and the 1-(4′-fluorobenzyl)pyridinium chloride salt. The crystallographic data for the title complex: triclinic P1, a=8.5698(8)?, b=9.3461(9)?, c=10.5361(10)?, α=67.177(2)°, β=67.398(2)°, γ=79.611(2)°, V=717.59(12)?3, Z=1. The [Ni(dto)2]2- anion with the Ni atom lying on an inversion center and exhibits a quasi-planar structure. An extensive hydrogen bond network of C-H…O is clearly observed. The nature and size of cation seems to play an important factor in the type of intermolecular interactions as well as the crystal packing in this kind of complexes.  相似文献   

3.
[(PW(11)O(39))(2)(Mo(4)S(4)O(4)(OH(2))(2))](10-) anions were obtained through the stereospecific addition of the [Mo(2)S(2)O(2)](2+) oxothiocation to the monovacant alpha-[PW(11)O(39)](7-) anion. K(10)[(PW(11)O(39))(2)(Mo(4)S(4)O(4)(OH(2))(2))].25H(2)O has been isolated as crystals and characterized by X-ray diffraction. The structure revealed a "sandwich-like" dimer of two alpha-[PW(11)O(39)](7-) subunits assembled by the noteworthy central cluster [H(4)Mo(4)S(4)O(6)]. The crystallization of the crude product produces an isomerically pure compound, which was characterized by (31)P and (183)W NMR. IR data were also supplied. In solution, the compound isomerizes, giving a second diastereoisomer. A kinetic experiment, carried out by (31)P NMR, allowed the conditions of the thermodynamic equilibrium to be determined. A structural relationship between the two isomers is proposed, fully consistent with NMR data. Cisoid and transoid isomers result in the relative disposition of each [PW(11)O(39)](7-) subunit, either staggered or eclipsed. An investigation of the formation of the [Mo(2)O(2)S(2)](2+) unit from the polycondensed cyclic precursor [Mo(10)S(10)O(10)(OH)(10)(H(2)O)(5)] and the aggregation process resulting in the oxothio [(PW(11)O(39))(2)(Mo(4)S(4)O(4)(OH(2))(2))](10-) compound has been undertaken. The studies were monitored by (31)P NMR and UV-vis spectroscopies. The reaction is quantitative in nearly stoichiometric conditions.  相似文献   

4.
Treatment of [M(II)(en)(3)][OTs](2) or methanolic ethylenediamine solutions containing transition metal p-toluenesulfonates (M(II) = Mn, Co) with aqueous K(4)M(IV)(CN)(8).2H(2)O or Cs(3)M(V)(CN)(8) (M(IV) = Mo, W; M(V) = Mo) affords crystalline clusters of [M(II)(en)(3)][cis-M(II)(en)(2)(OH(2))(mu-NC)M(IV)(CN)(7)].2H(2)O (M(IV) = Mo; M(II) = Mn, 1; Ni, 5; M(IV) = W; M(II) = Mn, 2; Ni, 6) and [cis-M(II)(en)(2)(OH(2))](2)[(mu-NC)(2)M(IV)(CN)(6)].4H(2)O (M(IV) = Mo; M(II) = Co, 3; Ni, 7; M(IV) = W; M(II) = Co, 4) stoichiometry. Each cluster contains cis-M(II)(en)(2)(OH(2))(mu-NC)(2+) units that likely result from dissociative loss of en from [M(II)(en)(3)](2+), affording cis-M(II)(en)(2)(OH(2))(2)(2+) intermediates that are trapped by M(IV)(CN)(8)(4-).  相似文献   

5.
Numerous Mo and W tris(dithiolene) complexes in varying redox states have been prepared and representative examples characterized crystallographically: [M(S(2)C(2)R(2))(3)](z) [M = Mo, R = Ph, z = 0 (1) or 1- (2); M = W, R = Ph, z = 0 (4) or 1- (5); R = CN, z = 2-, M = Mo (3) or W (6)]. Changes in dithiolene C-S and C-C bond lengths for 1 versus 2 and 4 versus 5 are indicative of ligand reduction. Trigonal twist angles (Θ) and dithiolene fold angles (α) increase and decrease, respectively, for 2 versus 1, 5 versus 4. Cyclic voltammetry reveals generally two reversible couples corresponding to 0/1- and 1-/2- reductions. The electronic structures of monoanionic molybdenum tris(dithiolene) complexes have been analyzed by multifrequency (S-, X-, Q-band) EPR spectroscopy. Spin-Hamiltonian parameters afforded by spectral simulation for each complex demonstrate the existence of two distinctive electronic structure types. The first is [Mo(IV)((A)L(3)(5-?))](1-) ((A)L = olefinic dithiolene, type A), which has the unpaired electron restricted to the tris(dithiolene) unit and is characterized by isotropic g-values and small molybdenum superhyperfine coupling. The second is formulated as [Mo(V)((B)L(3)(6-))](1-) ((B)L = aromatic dithiolene, type B) with spectra distinguished by a prominent g-anisotropy and hyperfine coupling consistent with the (d(z(2)))(1) paramagnet. The electronic structure disparity is also manifested in their electronic absorption spectra. The compound [W(bdt)(3)](1-) exhibits spin-Hamiltonian parameters similar to those of [Mo(bdt)(3)](1-) and thus is formulated as [W(V)((B)L(3)(6-))](1-). The EPR spectra of [W((A)L(3))](1-) display spin-Hamiltonian parameters that suggest their electronic structure is best represented by two resonance forms {[W(IV)((A)L(3)(5-?))](1-) ? [W(V)((A)L(3)(6-))](1-)}. The contrast with the corresponding [Mo(IV)((A)L(3)(5-?))](1-) complexes highlights tungsten's preference for higher oxidation states.  相似文献   

6.
Two gas-phase catalytic cycles for the two-electron oxidation of primary and secondary alcohols were detected by multistage mass spectrometry experiments. A binuclear dimolybdate center [Mo(2)O(6)(OCHR(2))](-) acts as the catalyst in both these cycles. The first cycle proceeds via three steps: (1) reaction of [Mo(2)O(6)(OH)](-) with alcohol R(2)HCOH and elimination of water to form [Mo(2)O(6)(OCHR(2))](-); (2) oxidation of the alkoxo ligand and its elimination as aldehyde or ketone in the rate-determining step; and (3) regeneration of the catalyst via oxidation by nitromethane. Step 2 does not occur at room temperature and requires the use of collisional activation to proceed. The second cycle is similar but differs in the order of reaction with alcohol and nitromethane. The nature of each of these reactions was probed by kinetic measurements and by variation of the substrate alcohols (structure and isotope labeling). The role of the binuclear molybdenum center was assessed by examination of the relative reactivities of the mononuclear [MO(3)(OH)](-) and binuclear [M(2)O(6)(OH)](-) ions (M = Cr, Mo, W). The molybdenum and tungsten binuclear centers [M(2)O(6)(OH)](-) (M = Mo, W) were reactive toward alcohol but the chromium center [Cr(2)O(6)(OH)](-) was not. This is consistent with the expected order of basicity of the hydroxo ligand in these species. The chromium and molybdenum centers [M(2)O(6)(OCHR(2))](-) (M = Cr, Mo) oxidized the alkoxo ligand to aldehyde, while the tungsten center [W(2)O(6)(OCHR(2))](-) did not, instead preferring the non-redox elimination of alkene. This is consistent with the expected order of oxidizing power of the anions. Each of the mononuclear anions [MO(3)(OH)](-) (M = Cr, Mo, W) was inert to reaction with methanol, highlighting the importance of the second MoO(3) unit in these catalytic cycles. Only the dimolybdate center has the mix of properties that allow it to participate in each of the three steps of the two catalytic cycles. The three reactions of these cycles are equivalent to the three essential steps proposed to occur in the industrial oxidation of gaseous methanol to formaldehyde at 300-400 degrees C over solid-state catalysts based upon molybdenum(VI)-trioxide. The new gas-phase catalytic data is compared with those for the heterogeneous process.  相似文献   

7.
The photophysical properties of acetonitrile solutions of [Ru(bpy)(3)](2+) and [S(2)Mo(18)O(62)](4-) are described. We discuss evidence for ion cluster formation in solution and the observation that despite the strong donor ability of the excited state of [Ru(bpy)(3)](2+) and its inherent photolability, adducts with [S(2)Mo(18)O(62)](4-) were photostable. Photophysical studies suggest that the quenching of the [Ru(bpy)(3)](2+) excited state by [S(2)Mo(18)O(62)](4-) occurs via a static mechanism and that binding is largely electrostatic in nature. Evidence is provided from difference spectroscopy and luminescence excitation spectroscopy for good electronic communication between [Ru(bpy)(3)](2+) and [S(2)Mo(18)O(62)](4-) with the presence of a novel, luminescent, inter-ion charge-transfer transition. The identity of the transition is confirmed by resonance Raman spectroscopy.  相似文献   

8.
The evolution of nickel speciation during the successive preparation steps of Ni-SiO(2) catalysts is studied by UV-Vis-NIR, FT-IR, DTG, TPR and TEM. The study focuses on the effect of the number of chelating ligands in the precursor complexes [Ni(en)(x)(H(2)O)((6-2x))](2+) (en = ethylenediamine, x = 1, 2, 3) on the adsorption on silica, and on nickel speciation after thermal treatment. When the en:Ni ratio in solution increases from 1 to 3, the most abundant complex is [Ni(en)(H(2)O)(4)](2+) (64% of all Ni complexes), [Ni(en)(2)(H(2)O)(2)](2+) (81%) and [Ni(en)(3)](2+) (61%), respectively. Equilibrium adsorption of [Ni(en)(x)(H(2)O)((6-2x))](2+) on SiO(2) results in the selective grafting of [Ni(en)(H(2)O)(4)](2+) and [Ni(en)(2)(H(2)O)(2)](2+), through the substitution of two labile H(2)O ligands by two surface SiO(-) groups. The surface [Ni(en)(H(2)O)(2)(SiO)(2)] complex formed by the grafting of [Ni(en)(H(2)O)(4)](2+) onto silica tends to transform into NiO and nickel phyllosilicate after calcination, which consequently leads to large and heterogeneously distributed metallic Ni particles upon reduction. In contrast, [Ni(en)(2)(SiO)(2)], resulting from the grafting of [Ni(en)(2)(H(2)O)(2)](2+) onto silica, no longer has aqua ligands able to react with other nickel complexes or silicium-containing species. Calcination transforms these complexes into isolated Ni(2+) ions, which are reduced into small metallic Ni particles with a more homogeneous size distribution, even at higher Ni loading.  相似文献   

9.
The active sites of the xanthine oxidase and sulfite oxidase enzyme families contain one pterin-dithiolene cofactor ligand bound to a molybdenum atom. Consequently, monodithiolene molybdenum complexes have been sought by exploratory synthesis for structural and reactivity studies. Reaction of [MoO(S(2)C(2)Me(2))(2)](1-) or [MoO(bdt)(2)](1-) with PhSeCl results in removal of one dithiolate ligand and formation of [MoOCl(2)(S(2)C(2)Me(2))](1-) (1) or [MoOCl(2)(bdt)](1-) (2), which undergoes ligand substitution reactions to form other monodithiolene complexes [MoO(2-AdS)(2)(S(2)C(2)Me(2))](1-) (3), [MoO(SR)(2)(bdt)](1-) (R = 2-Ad (4), 2,4,6-Pr(i)(3)C(6)H(2) (5)), and [MoOCl(SC(6)H(2)-2,4,6-Pr(i)(3))(bdt)](1-) (6) (Ad = 2-adamantyl, bdt = benzene-1,2-dithiolate). These complexes have square pyramidal structures with apical oxo ligands, exhibit rhombic EPR spectra, and 3-5 are electrochemically reducible to Mo(IV)O species. Complexes 1-6 constitute the first examples of five-coordinate monodithiolene Mo(V)O complexes; 6 approaches the proposed structure of the high-pH form of sulfite oxidase. Treatment of [MoO(2)(OSiPh(3))(2)] with Li(2)(bdt) in THF affords [MoO(2)(OSiPh(3))(bdt)](1-) (8). Reaction of 8 with 2,4,6-Pr(i)(3)C(6)H(2)SH in acetonitrile gives [MoO(2)(SC(6)H(2)-2,4,6-Pr(i)(3))(bdt)](1-) (9, 55%). Complexes 8 and 9 are square pyramidal with apical and basal oxo ligands. With one dithiolene and one thiolate ligand of a square pyramidal Mo(VI)O(2)S(3) coordination unit, 9 closely resembles the oxidized sites in sulfite oxidase and assimilatory nitrate reductase as deduced from crystallography (sulfite oxidase) and Mo EXAFS. The complex is the first structural analogue of the active sites in fully oxidized members of the sulfite oxidase family. This work provides a starting point for the development of both structural and reactivity analogues of members of this family.  相似文献   

10.
Comparisons (25 degrees C) are made of substitution reactions, X replacing H(2)O, at the tetrahedral Ni of the heterometallic sulfido cuboidal cluster [Mo(3)NiS(4)(H(2)O)(10)](4+), I = 2.00 M (LiClO(4)). Stopped-flow formation rate constants (k(f)/M(-)(1) s(-)(1)) for six X reagents, including two water soluble air-stable phosphines, 1,3,5-triaza-7-phosphaadamantane PTA (119) and tris(3-sulfonatophenyl)phosphine TPPTS(3)(-) (58), and CO (0.66), Br(-) (14.6), I(-) (32.3), and NCS(-) (44) are reported alongside the previous value for Cl(-) (9.4). A dependence on [H(+)] is observed with PTA, which gives an unreactive form confirmed by NMR as N-protonated PTA (acid dissociation constant K(a) = 0.61 M), but in no other cases with [H(+)] in the range 0.30-2.00 M. The narrow spread of rate constants for all but the CO reaction is consistent with an I(d) dissociative interchange mechanism. In addition NMR studies with H(2)(17)O enriched solvent are too slow for direct determination of the water-exchange rate constant indicating a value <10(3) s(-)(1). Equilibrium constants/M(-)(1) for 1:1 complexing with the different X groups at the Ni are obtained for PTA (2040) and TPPTS(3)(-) (8900) by direct spectrophotometry and from kinetic studies (k(f)/k(b)) for Cl(-) (97), Br(-) (150), NCS(-) (690), and CO (5150). No NCS(-) substitution at the Ni is observed in the case of the heterometallic cube [Mo(3)Ni(L)S(4)(H(2)O)(9)](4+), with tridentate 1,4,7-triazacyclononane(L) coordinated to the Ni. Substitution of NCS(-) for H(2)O, at the Mo's of [Mo(3)NiS(4)(H(2)O)(10)](4+) and [Mo(3)(NiL)S(4)(H(2)O)(9)](4+) are much slower secondary processes, with k(f) = 2.7 x 10(-)(4) M(-)(1) s(-)(1) and 0.94 x 10(-)(4) M(-)(1) s(-)(1) respectively. No substitution of H(2)O by TPPTS(3)(-) or CO is observed over approximately 1h at either metal on [Mo(3)FeS(4)(H(2)O)(10)](4+), on [Mo(4)S(4)(H(2)O)(12)](5+) or [Mo(3)S(4)(H(2)O)(9)](4+).  相似文献   

11.
12.
Reaction of the cyclic lacunary [H(7)P(8)W(48)O(184)](33-) anion (noted P(8)W(48)) with the [Mo(2)S(2)O(2)(H(2)O)(6)](2+) oxothiocation led to two compounds, namely, [K(4){Mo(4)O(4)S(4)(H(2)O)(3)(OH)(2)}(2)(WO(2))(P(8)W(48)O(184))](30-) (denoted 1) and [{Mo(4)O(4)S(4)(H(2)O)(3)(OH)(2)}(2)(P(8)W(48)O(184))](36-) (denoted 2), which were characterized in the solid state and solution. In the solid state, the structure of [K(4){Mo(4)O(4)S(4)(H(2)O)(3)(OH)(2)}(2)(WO(2))(P(8)W(48)O(184))](30-) reveals the presence of two disordered {Mo(4)O(4)S(4)(H(2)O)(3)(OH)(2)}(2+) "handles" connected on both sides of the P(8)W(48) ring. Such a disorder is consistent with the presence of two geometrical isomers where the relative disposition of the two {Mo(4)O(4)S(4)(H(2)O)(3)(OH)(2)}(2+) handles are arranged in a perpendicular or parallel mode. Such an interpretation is fully supported by (31)P and (183)W NMR solution studies. The relative stability of both geometrical isomers appears to be dependent upon the nature of the internal alkali cations, i.e., Na(+) vs K(+), and increased lability of the two {Mo(4)O(4)S(4)(H(2)O)(3)(OH)(2)}(2+) handles, compared to the oxo analogous, was clearly identified by significant broadening of the (31)P and (183)W NMR lines. Solution studies carried out by UV-vis spectroscopy showed that formation of the adduct [{Mo(4)O(4)S(4)(H(2)O)(3)(OH)(2)}(2)(P(8)W(48)O(184))](36-) occurs in the 1.5-4.7 pH range and corresponds to a fast and quantitative condensation process. Furthermore, (31)P NMR titrations in solution reveal formation of the "monohandle" derivative [{Mo(4)O(4)S(4)(H(2)O)(3)(OH)(2)}(P(8)W(48)O(184))](38-) as an intermediate prior to formation of the "bishandle" derivatives. Furthermore, the electrochemical behavior of [{Mo(4)O(4)S(4)(H(2)O)(3)(OH)(2)}(2)(P(8)W(48)O(184))](36-) was studied in aqueous medium and compared with the parent anion P(8)W(48).  相似文献   

13.
The Mo(3)SnS(4)(6+) single cube is obtained by direct addition of Sn(2+) to [Mo(3)S(4)(H(2)O)(9)](4+). UV-vis spectra of the product (0.13 mM) in 2.00 M HClO(4), Hpts, and HCl indicate a marked affinity of the Sn for Cl(-), with formation of the more strongly yellow [Mo(3)(SnCl(3))S(4)(H(2)O)(9)](3+) complex complete in as little as 0.050 M Cl(-). The X-ray crystal structure of (Me(2)NH(2))(6)[Mo(3)(SnCl(3))S(4)(NCS)(9)].0.5H(2)O has been determined and gives Mo-Mo (mean 2.730 ?) and Mo-Sn (mean 3.732 ?) distances, with a difference close to 1 ?. The red-purple double cube cation [Mo(6)SnS(8)(H(2)O)(18)](8+) is obtained by reacting Sn metal with [Mo(3)S(4)(H(2)O)(9)](4+). The double cube is also obtained in approximately 50% yield by BH(4)(-) reduction of a 1:1 mixture of [Mo(3)SnS(4)(H(2)O)(10)](6+) and [Mo(3)S(4)(H(2)O)(9)](4+). Conversely two-electron oxidation of [Mo(6)SnS(8)(H(2)O)(18)](8+) with [Co(dipic)(2)](-) or [Fe(H(2)O(6)](3+) gives the single cube [Mo(3)SnS(4)(H(2)O)(12)](6+) and [Mo(3)S(4)(H(2)O)(9)](4+) (up to 70% yield), followed by further two-electron oxidation to [Mo(3)S(4)(H(2)O)(9)](4+) and Sn(IV). The kinetics of the first stages have been studied using the stopped-flow method and give rate laws first order in [Mo(6)SnS(8)(H(2)O)(18)](8+) and the Co(III) or Fe(III) oxidant. The oxidation with [Co(dipic)(2)](-) has no [H(+)] dependence, [H(+)] = 0.50-2.00 M. With Fe(III) as oxidant, reaction steps involving [Fe(H(2)O)(6)](3+) and [Fe(H(2)O)(5)OH](2+) are implicated. At 25 degrees C and I = 2.00 M (Li(pts)) k(Co) is 14.9 M(-)(1) s(-)(1) and k(a) for the reaction of [Fe(H(2)O)(6)](3+) is 0.68 M(-)(1) s(-)(1) (both outer-sphere reactions). Reaction of Cu(2+) with the double but not the single cube is observed, yielding [Mo(3)CuS(4)(H(2)O)(10)](5+). A redox-controlled mechanism involving intermediate formation of Cu(+) and [Mo(3)S(4)(H(2)O)(9)](4+) accounts for the changes observed.  相似文献   

14.
The molecular and electronic structures of the four members, [Cr(tpy)(2)](PF(6))(n) (n = 3-0; complexes 1-4; tpy = 2,2':6',2″-terpyridine), of the electron transfer series [Cr(tpy)(2)](n+) have been determined experimentally by single-crystal X-ray crystallography, by their electro- and magnetochemistry, and by the following spectroscopies: electronic absorption, X-ray absorption (XAS), and electron paramagnetic resonance (EPR). The monoanion of this series, [Cr(tpy)(2)](1-), has been prepared in situ by reduction with KC(8) and its EPR spectrum recorded. The structures of 2, 3, 4, 5, and 6, where the latter two compounds are the Mo and W analogues of neutral 4, have been determined at 100(2) K. The optimized geometries of 1-6 have been obtained from density functional theoretical (DFT) calculations using the B3LYP functional. The XAS and low-energy region of the electronic spectra have also been calculated using time-dependent (TD)-DFT. A consistent picture of the electronic structures of these octahedral complexes has been established. All one-electron transfer processes on going from 1 to 4 are ligand-based: 1 is [Cr(III)(tpy(0))(2)](PF(6))(3) (S = (3)/(2)), 2 is [Cr(III)(tpy(?))(tpy(0))](PF(6))(2) (S = 1), 3 is [Cr(III)(tpy(?))(2)](PF(6)) (S = (1)/(2)), and 4 is [Cr(III)(tpy(??))(tpy(?))](0) (S = 0), where (tpy(0)) is the neutral parent ligand, (tpy(?))(1-) represents its one-electron-reduced π radical monoanion, (tpy(2-))(2-) or (tpy(??))(2-) is the corresponding singlet or triplet dianion, and (tpy(3-))(3-) (S = (1)/(2)) is the trianion. The electronic structure of 2 cannot be described as [Cr(II)(tpy(0))(2)](PF(6))(2) (a low-spin Cr(II) (d(4); S = 1) complex). The geometrical features (C-C and C-N bond lengths) of these coordinated ligands have been elucidated computationally in the following hypothetical species: [Zn(II)Cl(2)(tpy(0))](0) (S = 0) (A), [Zn(II)(tpy(?))Cl(NH(3))](0) (S = (1)/(2)) (B), [Zn(II)(tpy(2-))(NH(3))(2)](0) (S = 0 or 1) (C), and [Al(III)(tpy(3-))(NH(3))(3)](0) (S = (1)/(2) and (3)/(2)) (D). The remarkable electronic structure of the monoanion has been calculated and experimentally verified by EPR spectroscopy to be [Cr(III)(tpy(2-))(tpy(??))](1-) (S = (1)/(2)), a complex in which the two dianionic tpy ligands differ only in the spin state. It has been clearly established that coordinated tpy ligands are redox-active and can exist in at least four oxidation levels.  相似文献   

15.
The reaction of [M(CN)(6)](3-) (M = Cr(3+), Mn(3+), Fe(3+), Co(3+)) and [M(CN)(8)](4-/3-) (M = Mo(4+/5+), W(4+/5+)) with the trinuclear copper(II) complex of 1,3,5-triazine-2,4,6-triyltris[3-(1,3,5,8,12-pentaazacyclotetradecane)] ([Cu(3)(L)](6+)) leads to partially encapsulated cyanometalates. With hexacyanometalate(III) complexes, [Cu(3)(L)](6+) forms the isostructural host-guest complexes [[[Cu(3)(L)(OH(2))(2)][M(CN)(6)](2)][M(CN)(6)]][M(CN)(6)]30 H(2)O with one bridging, two partially encapsulated, and one isolated [M(CN)(6)](3-) unit. The octacyanometalates of Mo(4+/5+) and W(4+/5+) are encapsulated by two tris-macrocyclic host units. Due to the stability of the +IV oxidation state of Mo and W, only assemblies with [M(CN)(8)](4-) were obtained. The Mo(4+) and W(4+) complexes were crystallized in two different structural forms: [[Cu(3)(L)(OH(2))](2)[Mo(CN)(8)]](NO(3))(8)15 H(2)O with a structural motif that involves isolated spherical [[Cu(3)(L)(OH(2))](2)[M(CN)(8)]](8+) ions and a "string-of-pearls" type of structure [[[Cu(3)(L)](2)[M(CN)(8)]][M(CN)(8)]](NO(3))(4) 20 H(2)O, with [M(CN)(8)](4-) ions that bridge the encapsulated octacyanometalates in a two-dimensional network. The magnetic exchange coupling between the various paramagnetic centers is characterized by temperature-dependent magnetic susceptibility and field-dependent magnetization data. Exchange between the CuCu pairs in the [Cu(3)(L)](6+) "ligand" is weakly antiferromagnetic. Ferromagnetic interactions are observed in the cyanometalate assemblies with Cr(3+), exchange coupling of Mn(3+) and Fe(3+) is very small, and the octacoordinate Mo(4+) and W(4+) systems have a closed-shell ground state.  相似文献   

16.
A series of new complexes, Mo(2)O(2)S(2)[S(2)P(OR)(2)](2) (where R = Et, n-Pr, i-Pr) and Mo(2)O(2)S(2)[S(2)POGO](2) (where G = -CH(2)CMe(2)CH(2)-, -CMe(2)CMe(2)-) have been prepared by the dropwise addition of an ethanolic solution of the ammonium or sodium salt of the appropriate O,O-dialkyl or -alkylene dithiophosphoric acid, or the acid itself, to a hot aqueous solution of molybdenum(V) pentachloride. The complexes were also formed by heating solutions of Mo(2)O(3)[S(2)P(OR)(2)](4) or Mo(2)O(3)[S(2)POGO](4) species in glacial acetic acid. The Mo(2)O(2)S(2)[S(2)P(OR)(2)](2) and Mo(2)O(2)S(2)[S(2)POGO](2) compounds were characterized by elemental analyses, (1)H, (13)C, and (31)P NMR, and infrared and Raman spectroscopy, as were the 1:2 adducts formed on reaction with pyridine. The crystal structures of Mo(2)O(2)S(2)[S(2)P(OEt(2))](2), Mo(2)O(2)S(2)[S(2)P(OEt)(2)](2).2NC(5)H(5), and Mo(2)O(3)[S(2)P(OPh)(2)](4) were determined. Mo(2)O(2)S(2)[S(2)P(OEt)(2)](2) (1) crystallizes in space group C2/c, No. 15, with cell parameters a = 15.644(3) ?, b = 8.339(2) ?, c = 18.269(4) ?, beta = 103.70(2) degrees, V = 2315.4(8) ?(3), Z = 4, R = 0.0439, and R(w) = 0.0353. Mo(2)O(2)S(2)[S(2)P(OEt)(2)](2).2NC(5)H(5) (6) crystallizes in space group P&onemacr;, No. 2, with the cell parameters a = 12.663(4) ?,b = 14.291(5) ?, c = 9.349(3) ?, alpha = 100.04(3) degrees, beta = 100.67(3) degrees, gamma = 73.03(3) degrees V = 1557(1) ?(3), Z = 2, R = 0.0593, and R(w) = 0.0535. Mo(2)O(3)[S(2)P(OPh)(2)](4) (8) crystallizes in space group P2(1)/n, No. 14, with cell parameters a = 15.206(2)?, b = 10.655(3)?, c = 19.406(3)?, beta = 111.67(1) degrees, V = 2921(1)?(3), Z = 2, R = 0.0518, R(w) = 0.0425. The immediate environment about the molybdenum atoms in 1 is essentially square pyramidal if the Mo-Mo interaction is ignored. The vacant positions in the square pyramids are occupied by two pyridine molecules in 6, resulting in an octahedral environment with very long Mo-N bonds. The terminal oxygen atoms in both 1 and 6 are in the syn conformation. In 8, which also has a distorted octahedral environment about molybdenum, two of the dithiophosphate groups are bidentate as in 1 and 6, but the two others have one normal Mo-S bond and one unusually long Mo-S bond.  相似文献   

17.
Kou HZ  Zhou BC  Gao S  Liao DZ  Wang RJ 《Inorganic chemistry》2003,42(18):5604-5611
A series of cyano-bridged Ni(II)-Cr(I/III) complexes have been synthesized by the reactions of hexaazacyclic Ni(II) complexes with [Cr(CN)(6)](3-) or [Cr(CN)(5)(NO)](3-). Using the tetravalent Ni(II) complex [Ni(H(2)L(2))](4+) (L(2) = 3,10-bis(2-aminoethyl)-1,3,6,8,10,12-hexaazacyclotetradecane), one-dimensional chainlike complexes were produced and subject to magnetic studies, affording the intermetallic magnetic exchange constants of J(1) = +0.23 cm(-1) and J(2) = +8.4 cm(-1) for the complex [Ni(H(2)L(2))][Cr(CN)(5)(NO)]ClO(4).5H(2)O (1) and of J = +5.9 cm(-1) for the complex [Ni(H(2)L(2))](4)[Cr(CN)(6)](5)OH.15H(2)O (2). X-ray diffraction analysis shows that complex 1 has a zigzag chain structure, whereas complex 2 consists of a branched chain structure. Complex 2 exhibits antiferromagnetic ordering at 8.0 K (T(N)). When an octahedral Ni(II) complex cis-[NiL(3)(en)](2+) (en = 1,2-ethylenediamine, L(3) = 3,10-bis(2-hydroxyethyl)-1,3,5,8,10,12-hexaazacyclotetradecane) was used for the synthesis, the common 2D honeycomb-layered complex [NiL(3)](3)[Cr(CN)(5)(NO)](2).8H(2)O (3) was obtained, which has a T(N) value of 3.3 K. Below T(N), a metamagnetic behavior was observed in complexes 2 and 3.  相似文献   

18.
We have synthesized the complex [Ru(bpy)(2)(bpy(OH)(2))](2+) (bpy =2,2'-bipyridine, bpy(OH)(2) = 4,4'-dihydroxy-2,2'-bipyridine). Experimental results coupled with computational studies were utilized to investigate the structural and electronic properties of the complex, with particular attention paid toward the effects of deprotonation on these properties. The most distinguishing feature observed in the X-ray structural data is a shortening of the CO bond lengths in the modified ligand upon deprotonation. Similar results are also observed in the computational studies as the CO bond becomes double bond in character after deprotonating the complex. Electrochemically, the hydroxy-modified bipyridyl ligand plays a significant role in the redox properties of the complex. When protonated, the bpy(OH)(2) ligand undergoes irreversible reduction processes; however, when deprotonated, reduction of the substituted ligand is no longer observed, and several new irreversible oxidation processes associated with the modified ligand arise. pH studies indicate [Ru(bpy)(2)(bpy(OH)(2))](2+) has two distinct deprotonations at pK(a1) = 2.7 and pK(a2) = 5.8. The protonated [Ru(bpy)(2)(bpy(OH)(2))](2+) complex has a characteristic UV/Visible absorption spectrum similar to the well-studied complex [Ru(bpy)(3)](2+) with bands arising from Metal-to-Ligand Charge Transfer (MLCT) transitions. When the complex is deprotonated, the absorption spectrum is altered significantly and becomes heavily solvent dependent. Computational methods indicate that the deprotonated bpy(O(-))(2) ligand mixes heavily with the metal d orbitals leading to a new absorption manifold. The transitions in the complex have been assigned as mixed Metal-Ligand to Ligand Charge Transfer (MLLCT).  相似文献   

19.
Novel molybdenum dithiolene compounds having neighboring amide groups as models for molybdoenzymes, (NEt(4))(2)[Mo(IV)O{1,2-S(2)-3,6-(RCONH)(2)C(6)H(2)}(2)] (R = CH(3), CF(3), t-Bu, Ph(3)C), were designed and synthesized. The contributions of the NH...S hydrogen bond to the electrochemical properties of the metal ion and the reactivity of the O-atom-transfer reaction were investigated by a comparison with [Mo(IV)O(1,2-S(2)C(6)H(4))(2)](2)(-). The MoOS(4) core of [Mo(IV)O{1,2-S(2)-3,6-(CH(3)CONH)(2)C(6)H(2)}(2)](2)(-) shows no significant geometrical difference from that of [Mo(IV)O(1,2-S(2)C(6)H(4))(2)](2)(-) in the crystal. The hydrogen bonds positively shifted the Mo(IV/V) redox potential and accelerated the reduction of Me(3)NO.  相似文献   

20.
A kinetic study of [OsO(4)] reduction by aliphatic alcohols (MeOH and EtOH) was performed in a 2.0 M NaOH matrix at 298.1 K. The rate model that best fitted the UV-VIS data supports a one-step, two electron reduction of Os(VIII) (present as both the [Os(VIII)O(4)(OH)](-) and cis-[Os(VIII)O(4)(OH)(2)](2-) species in a ratio of 0.34:0.66) to form the trans-[Os(VI)O(2)(OH)(4)](2-) species. The formed trans-[Os(VI)O(2)(OH)(4)](2-) species subsequently reacts relatively rapidly with the cis-[Os(VIII)O(4)(OH)(2)](2-) complex anion to form a postulated [Os(VII)O(3)(OH)(3)](2-) species according to: cis-[Os(VIII)O(4)(OH)(2)](2-) + trans-[Os(VI)O(2)(OH)(4)](2-) (k+2) (k-2) 2[Os(VII)O(3)(OH)(3)](2-). The calculated forward, k(+2), and reverse, k(-2), reaction rate constants of this comproportionation reaction are 620.9 ± 14.6 M(-1) s(-1) and 65.7 ± 1.2 M(-1) s(-1) respectively. Interestingly, it was found that the postulated [Os(VII)O(3)(OH)(3)](2-) complex anion does not oxidize MeOH or EtOH. Furthermore, the reduction of Os(VIII) with MeOH or EtOH is first order with respect to the aliphatic alcohol concentration. In order to corroborate the formation of the [Os(VII)O(3)(OH)(3)](2-) species predicted with the rate model simulations, several Os(VIII)/Os(VI) mole fraction and mole ratio titrations were conducted in a 2.0 M NaOH matrix at 298.1 K under equilibrium conditions. These titrations confirmed that the cis-[Os(VIII)O(4)(OH)(2)](2-) and trans-[Os(VI)O(2)(OH)(4)](2-) species react in a 1:1 ratio with a calculated equilibrium constant, K(COM), of 9.3 ± 0.4. The ratio of rate constants k(+2) and k(-2) agrees quantitatively with K(COM), satisfying the principle of detailed balance. In addition, for the first time, the molar extinction coefficient spectrum of the postulated [Os(VII)O(3)(OH)(3)](2-) complex anion is reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号