首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 405 毫秒
1.
The continuous-variable (CV) entanglement between two mesoscopic Josephson junctions is studied and the time-dependent characteristic function in Wigner representation for the Josephson junction subsystem driven by a singlemode thermal field is analytically obtained. It is found that an initial lowest energy state of the junction subsystem can evolve into a two-mode entangled Gaussian state through the interaction with the thermal radiation field. Furthermore, we investigate the influence of the temperature on the entanglement of the junctions and find that the CV entanglement of the two junctions shows the critical behavior with respect to the temperature.  相似文献   

2.
We propose a scheme to generate stationary quadripartite entanglement in two-mode optical Fabry-Perot cavity, which consisted of the same two fixed mirrors and the same two perfectly reflective movable mirrors. We treat the whole two-cavity fields-two movable mirrors system as intrinsically quadripartite and investigate quadripartite continuous-variable (CV) entanglement among them. Using the criterion proposed by Loock and Furrsawa, we demonstrate that genuine quadripartite CV entanglement can be generated in this system. This system will provide a way to create genuine quadripartite entanglement in a macroscopic level and will hold good prospects for quantum information and quantum networks.  相似文献   

3.
Ping Chang  Bin Shao 《Physics letters. A》2008,372(48):7124-7128
We investigate the entanglement transfer from a bipartite non-Gaussian continuous-variable (CV) system to a pair of localized qubits. The non-Gaussian state is obtained by the de-Gaussification process involving subtracting photons from or adding photons to a Gaussian field. It is shown that such de-Gaussification process can improve the entanglement transfer.  相似文献   

4.
We proposed a scheme for generating fully three-mode continuous-variable (CV) entanglement between three nondegenerate cavity modes in a single-atom laser. In our scheme, the single-atom laser consists of a four-level atom inside a triply resonant cavity, and the atomic coherence is induced by two classical laser fields driving the corresponding atomic transitions. To demonstrate the generation of entanglement, we numerically simulated the dynamics of this system, and the numerical simulation shows that the single-atom laser considered here can be seen as a three-mode CV entanglement amplifier even in the presence of cavity losses. Moreover, we also show that the generation of entanglement doesn’t depend intensively on the initial condition of cavity field, and the fully three-mode CV entanglement can be realized no matter the three entangled (nondegenerate) modes are initially in the same state or different states based on our scheme.  相似文献   

5.
We investigate how entanglement can be transferred between qubits and continuous-variable (CV) systems. We find that one ebit borne in maximally entangled qubits can be fully transferred to two CV systems which are initially prepared in a pure separable Gaussian field with high excitation. We show that it is possible to retrieve the entanglement back to qubits from the entangled CV systems. The deposition of multiple ebits from qubits to the initially separable CV systems is also pointed out. We show that the entanglement transfer and retrieval are done at a quasisteady state.  相似文献   

6.
邵彬  邹健 《中国物理》1999,8(5):368-373
We consider the system of a mesoscopic Josephson junction interacting with a quantized radiation field and investigate the fluctuation properties of the junction variables with time evolution. Our results show that, due to the quantum entanglement between the field and junction, the mesoscopic Josephson junction subsystem can exhibit squeezing behavior.  相似文献   

7.
We demonstrate the generation of two-mode continuous-variable (CV) entanglement in a V-type three-level atom trapped in a doubly resonant cavity using a microwave field driving a hyperfine transition between two upper excited states. By numerically simulating the dynamics of this system, our results show that the CV entanglement with large mean number of photons can be generated even in presence of the atomic relaxation and cavity losses. More interestingly, it is found that the intensity and period of entanglement can be enhanced significantly with the increasing of the atomic relaxation due to the existence of the perfect spontaneously generated interference between two atomic decay channels. Moreover, we also show that the entanglement can be controlled efficiently by tuning the intensity of spontaneously generated interference and the detuning of the cavity field.  相似文献   

8.
We propose a new scheme to achieve fully three-mode entanglement based on the standard criteria [P. van Loock and A. Furusawa, Phys. Rev. A 67, 052315 (2003)] in a four-level atomic system driven by two strong classical fields. Via numerically simulating the dynamics of the system, we investigate the generation and evolution of entanglement. Based on our scheme, it is demonstrated that the three-mode continuous-variable (CV) entanglement can be achieved under different initial conditions and the entangled period will be extended by enhancing the intensity of the classical field. Moreover, our numerical results also show that the present system can be considered as a three-mode entanglement amplifier.  相似文献   

9.
We investigate entanglement transfer from two separate cavities to the excitons in two quantum dots separately placed in the two cavities. The cavity fields and the excitons are treated as two continuous-variable (CV) subsystems. The time-dependent characteristic functions in the Wigner representation for the two subsystems are analytically obtained. Under the conditions that one of the two CV subsystems is initially prepared in a two-mode squeezed vacuum state and the other in its lowest energy state, we show that the entanglement reciprocation between the cavity fields and the excitons is realizable.  相似文献   

10.
This paper investigates entanglement between two atoms in two distant cavities, which are connected by an optical fiber. We give an exact expression of the evolution of the whole system, and study the entanglement between the two atoms. We find that even the fiber-cavity coupling constant is smaller than the atom-cavity coupling constant, high degree entanglement between the two atoms is obtainable. This result gives a new prospect for experimental realization.  相似文献   

11.
We propose a spin-independent scheme to generate and detect two-particle entanglement in a mesoscopic normal-superconductor system. A superconductor, weakly coupled to the normal conductor, generates an orbitally entangled state by injecting pairs of electrons into different leads of the normal conductor. The entanglement is detected via violation of a Bell inequality, formulated in terms of zero-frequency current cross correlators. It is shown that the Bell inequality can be violated for arbitrary strong dephasing in the normal conductor.  相似文献   

12.
We investigate the generation and the evolution of continuous-variable (CV) entanglement from a laser-driven four-state atom inside a doubly resonant cavity under Raman excitation. Two transitions in the four-state atom independently interact with the two cavity modes, while two other transitions are driven by coupling laser fields. By including the atomic relaxation as well as cavity losses, we show that the CV entanglement with large mean number of
photons can be generated in our scheme. We also show that the intensity of the coupling laser fields can influence effectively the entanglement period of the cavity field. Different from the conventional resonant excitation scheme where zero one-photon detuning are required, it is found that the intensity and period of entanglement between the two cavity modes as well as the total mean photon number of the cavity field can be adjusted by properly
modulating the frequency detuning.  相似文献   

13.
We present a proposal for the experimental observation of energy-time entanglement of quasiparticles in mesoscopic physics. This type of entanglement arises whenever correlated particles are produced at the same time and this time is uncertain in the sense of quantum uncertainty, as has been largely used in photonics. We discuss its feasibility for electron-hole pairs. In particular, we argue that junctions between materials in which electrons and holes, respectively, propagate ballistically and behave as "entanglers" for energy-time entanglement when irradiated with a continuous laser.  相似文献   

14.
We investigate two identical Λ-type atoms in free space, and focus on the entanglement between the two atoms. We derive a master equation for the atomic subspace and solve it analytically to show how the spontaneous emission from the two atoms system induces entanglement. The magnitude of the entanglement and the steady state entanglement are found to be strongly dependent on the initial states and the orientation of the dipoles of the two atoms.  相似文献   

15.
We study a dynamic process of disentanglement by considering the time evolution of bound entanglement for a quantum open system, two qutrits coupling to a common environment. Here, the initial quantum correlations of the two qutrits are characterized by the bound entanglement. Both bosonic and spin environments are considered. We found that the bound entanglement displays collapses and revivals, and it can be stable against small temperature and time change. The thermal fluctuation effects on bound entanglement are also considered.  相似文献   

16.
We investigate the entanglement dynamics and decoherence of a three-qubit system under a quantum spin environment at a finite temperature in the thermodynamics limit. For the case under study, we find the evolution of pairwise entanglement depends not only on the initial states but also on the parameters related to the system and the spin environment. In addition, an undesirable entanglement sudden death occurs in the process of entanglement evolution, and this effect can be controlled by the coupling constant between two qubits, external magnetic field, and the interaction between the system and the environment.  相似文献   

17.
The thermal entanglement in a two-spin-qutrit system with two spins coupled by exchange interaction is investigated in terms of the measure of entanglement called ‘negativity’. We strictly show that for any temperature the entanglement is symmetric with respect to zero magnetic field. The behavior of negativity is presented for four different cases. We find that the entanglement may be enhanced under a nonuniform magnetic field. Because there is not any necessary and sufficient condition for quantum separability in systems of dimension 3⊗3, our results are qualitative, not quantitative.  相似文献   

18.
We study quantum entanglement between two spatially separated atoms coupled to the thermal reservoir. The influences of the initial state of the system, the atomic frequency difference and the mean number of the thermal field on the entanglement are examined. The results show that the maximum of the entanglement obtained with nonidentical atoms is greater than that obtained with identical atoms. The degree of entanglement is progressively decreased with the increase of the thermal noise. Interestingly, the two atoms can be easily entangled even when the two atoms are initially prepared in the most mixed states.  相似文献   

19.
We study the entanglement dynamics and relaxation properties of a system of two interacting qubits in the cases of (I) two independent bosonic baths and (II) one common bath. We find that in the case (II) the existence of a decoherence-free subspace (DFS) makes entanglement dynamics very rich. We show that when the system is initially in a state with a component in the DFS the relaxation time is surprisingly long, showing the existence of semi-decoherence free subspaces.  相似文献   

20.
Entanglement is realized in asymmetric coupled double quantum wells (DQWs) trapped in a doubly resonant cavity by means of Fano-type interference through a tunneling barrier, which is different from the previous studies on entanglement induced by strong external driven fields in atomic media. We investigate the generation and evolution of entanglement and show that the strength of Fano interference can influence effectively the degree of the entanglement between two cavity modes and the enhanced entanglement can be generated in this DQW system. The present investigation may provide research opportunities in quantum entangled experiments in the DQW solid-state nanostructures and may result in a substantial impact on the technology for entanglement engineering in quantum information processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号