首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Additions of methylphenylsulfonium methylide onto chiral non-racemic N-sulfinyl imines (R'-SO-N=CH-R, R'=t-butyl, R=protected diol), followed by ring closure, yield terminal aziridines with high diastereoselectivity. Control reactions have established that both N- and C- iminyl substituents impact product preference, and when properly matched, one addition product is selected almost exclusively. Using solution-phase density functional computational methods, minima and transition state searches have been performed to reveal the structural origins of the diastereoselectivity. Our computational findings indicate that ring closure is fast and irreversible, and consequently, the relative energies of the transition states for the competing Re/Si addition steps determine the product diastereomeric ratios. Analysis of addition transition state structures reveals the causes of selectivity as arising from the N- and C- iminyl substituents, and we identify the S (R) configuration of the N-sulfinyl sulfur atom as the dominant director of Si (Re) addition. The control attributed to the sulfur configuration is tied to an important favorable internal interaction between the sulfinyl oxygen and the iminyl hydrogen. The protected diol acts as a secondary director, owing to steric/electrostatic interactions with the approaching ylide.  相似文献   

2.
Zuo CS  Quan JM  Wu YD 《Organic letters》2007,9(21):4219-4222
Density functional theory calculations indicate that the cage molecule 4 can trap F- in the gas phase (-80.5 kcal/mol) as well as in CH2Cl2 (-14.7 kcal/mol) via strong C-H...F- hydrogen bonds and pi...F- interaction.  相似文献   

3.
The trans-cis isomerization of the styrylpyridine carbon-carbon double bond induced by visible light irradiation in fac-[Re(CO)(3)(bpy)(stpy)](+) (bpy = 2,2'-bipyridine; stpy = t-4-styrylpyridine) has been investigated by means of quantum-chemical methods. The structures of the various cis and trans conformers of [Re(CO)(3)(bpy)(stpy)](+) have been optimized at the density functional theory (DFT) level. Three rotational conformers for the most stable trans isomer lie within 2.3 kJ mol(-1) each other. The energy difference between the cis and trans isomers is 27.0 kJ mol(-1). The electronic spectroscopy of the most stable conformers has been investigated by time-dependent DFT (TD-DFT) and complete active space self-consistent field/CAS second order perturbation theory (CASSCF/CASPT2) calculations. The lowest absorption bands are dominated by metal-to-ligand charge-transfer (MLCT, d(Re)-->pi*(bpy)) transitions calculated at about 25,000 cm(-1) and by a strong intraligand (1)IL (pi(stpy)-->pi*(stpy)) transition in the near UV region. On the basis of CASSCF potential energy curves (PECs) calculated as a function of the torsion angle of the C=C bond of the styrylpyridine ligand, it is shown that the role of the low-lying MLCT states is important in the photoisomerization mechanism. In contrast to the free organic ligand, in which the singlet mechanism is operational via the (1)IL (S(1)) and electronic ground (S(0)) states, coordination to the rhenium steers the isomerization to the triplet PEC corresponding to the (3)IL state. From the (3)IL(t) (t = trans) the system evolves to the perpendicular intermediate (3)IL(p) (p = perpendicular) following a 90 degrees rotation around the styrylpyridine C=C bond. The metal center acts as a photosensitizer because of the presence of photoactive MLCT states under visible irradiation. The position of the crossing between the (3)IL and electronic ground state PEC determines the quantum yield of the isomerization process.  相似文献   

4.
The intrinsic factors governing the diastereofacial selectivity of 2-methyl-5-X-2-adamantyl cations (X = F (I(F)), Si(CH(3))(3) (I(Si))) toward a representative nucleophile, i.e., methanol, have been investigated in the gas phase at 750 Torr and in the 20-80 degrees C temperature range. The kinetic results indicate that CH(3)OH addition to I(F) proceeds through tight transition structures (TS(F)(syn) and TS(F)(anti)) characterized by advanced C-O bonding. The same interactions are much less pronounced in the comparatively loose transition structures involved in the CH(3)OH addition to I(Si) (TS(Si)(syn) and TS(Si)(anti)). The experimental evidence indicates that the activation barriers for the anti addition to I(F) and I(Si) are invariably lower than those for the syn attack. Large adverse entropic factors account for the preferred syn diastereoselectivity observed in the reaction with I(F). Entropy plays a minor role in the much looser transition structures involved in the reaction with I(Si), which instead exhibits a preferred anti diastereoselectivity. Comparison of the above gas-phase results with related theoretical and solution data suggests that the diastereofacial selectivity of I(F) and I(Si) measured in solution arises in part from the differential solvation of the two faces of the pyramidalized ions.  相似文献   

5.
The synthesis of tris(2,6-dihydroxyphenyl)amine diborate, 4, is reported. This compound contains a linear B...N...B array for which a symmetrical three-center two-electron (3c-2e) bond is possible. The X-ray crystal structure of 4 shows that 3c-2e bonding is, in fact, absent. Rather, the B-N-B array of 4 is unsymmetrical, having a 2c-2e B-N dative bond with the remaining boron pyramidalized outward and bonded to the oxygen of THF, i.e., 4 x THF. In THF solution, 4 displays temperature-dependent 13C NMR spectra from which a DeltaG++ of 11.6 kcal/mol at 262 K may be calculated. The dynamic process observed in solution corresponds to a bond-switching equilibrium in which the B-N bond oscillates between the two borons ("bell clapper"). Ab initio calculations indicate that the most likely pathway for the bond switch does not involve a 3c-2e B...N...B bond, but rather occurs by nucleophilic attack of THF on the datively bonded boron to generate 4 x (THF)2, lacking any B-N interactions, followed by loss of one THF. The B-N-B system of 4 sans the perturbing effect of solvent was also investigated computationally. The form of 4 containing a 3c-2e bond is found to be a transition state in the solvent-free bond-switch reaction of 4, lying 2.66 kcal/mol above 4. The stability of three-center bonds to in-line distortion (viz., X...Y...X --> X-Y.........X) is discussed from the point of view of the second-order Jahn-Teller effect.  相似文献   

6.
Transmetalation of 1-lithiotetrahydroisoquinolyloxazolines with magnesium halides affords Grignard reagents that add to aldehydes with up to 80% selectivity for one of the four possible diastereomeric products. An oxazoline chiral auxiliary derived from camphor provides an optimal blend of diastereoselectivity and isomer separability. Synthetic applications of the optimal auxiliary, patterned after a literature approach in the racemic series, comprise an improved (formal) synthesis of bicuculline, egenine, and corytensine, as well as an efficient synthesis of corlumine. Preliminary NMR studies show that both 1-lithio- and 1-magnesiotetrahydroisoquinolyloxazolines are dynamic mixtures in THF solution at low temperatures. The barrier to pyramidal inversion of the secondary Grignard reagent is in the 9.8-10.1 kcal/mol range, while an upper limit of about 8.2 kcal/mol can be assigned to the barrier to the organolithium inversion.  相似文献   

7.
The epoxidation of three stereolabeled methyl-substituted chiral allylic alcohols with (1,2)A and/or (1,3)A allylic strain, namely 3-methylbut-3-en-2-ol (1a), pent-3-en-2-ol (1b), and 3-methylpent-3-en-2-ol (1c), have been studied by the density-functional theory method, B3LYP/6-31+G(d,p). For each substrate we calculated the two prereaction complexes with Ti(OH)(4)/MeOOH (the oxidant model for Ti(O-i-Pr)(4)/t-BuOOH), their threo and erythro transition states for oxygen transfer, and the corresponding product complexes. For substrate 1a, the erythro transition state is 0.91 kcal/mol of lower energy than the threo one; for substrates 1b and 1c, the threo compared to the erythro transition states are by 1.05 and 0.21 kcal/mol more favorable, respectively. The threo/erythro product ratios have been estimated from the computed free energies for the competing threo and erythro transition states 3a-c in CH(2)Cl(2) solution to be 12:88 (1a), 92:8 (1b), and 77:23 (1c), which are in good accordance with the experimental values 22:78 (1a), 91:9 (1b), and 83:17 (1c). The diastereoselectivity of this diastereoselective oxyfunctionalization is rationalized in terms of the competition between (1,3)A and (1,2)A strain and the electronic advantage for the spiro transition state. In addition, solvent effects are also play a role for the diastereoselectivity at the same time.  相似文献   

8.
The energy hypersurface for the attack of fluoride ion on methyl fluoride has been explored with ab initio LCAO-SCF calculations at a split-valence basis set level. Transition states for frontside and backside attack have been located. In addition to transition states, two possible F-CH3F clusters have been identified. The transition state for the substitution of fluoride with retention of configuration is found to be 56 kcal/mol higher than the transition state for inversion of configuration. The transition state for hydride displacement with inversion is 62 kcal/mol above the transition state for fluoride substitution with inversion.  相似文献   

9.
Density functional and ab initio methods have been used to study the mechanisms for key dynamic processes of the experimentally known S4-symmetric [16]annulene (1a). Using BH&HLYP/6-311+G** and B3LYP/6-311+G**, we located two viable stepwise pathways with computed energy barriers (Ea = 8-10 kcal/mol) for conformational automerization of 1a, in agreement with experimental data. The transition states connecting these conformational minima have M?bius topology and serve as starting points for non-degenerate pi-bond shifting (configuration change) via M?bius aromatic transition states. The key transition state, TS1-2, that connects the two isomers of [16]annulene (CTCTCTCT, 1 --> CTCTTCTT, 2) has an energy, relative to the S4 isomer, that ranged from 6.9 kcal/mol (B3LYP/6-311+G**) to 16.7 kcal/mol (BH&HLYP/6-311+G**), bracketing the experimental barrier. At our best level of theory, CCSD(T)/cc-pVDZ(est), this barrier is 13.7 kcal/mol. Several other M?bius bond-shifting transition states, as well as M?bius topology conformational minima, were found with BH&HLYP energies within 22 kcal/mol of 1a, indicating that many possibilities exist for facile thermal configuration change in [16]annulene. This bond-shifting mechanism and the corresponding low barriers contrast sharply with those observed for cis/trans isomerization in acyclic polyenes, which occurs via singlet diradical transition states. All M?bius bond-shifting transition states located in [16]- and [12]annulene were found to have RHF --> UHF instabilities with the BH&HLYP method but not with B3LYP. This result appears to be an artifact of the BH&HLYP method. These findings support the idea that facile thermal configuration change in [4n]annulenes can be accounted for by mechanisms involving twist-coupled bond shifting.  相似文献   

10.
Ab initio and DFT calculations reveal that acyl radicals add to imines and electron-rich olefins through simultaneous SOMO --> pi*, pi --> SOMO, and HOMO --> pi*C=O interactions between the radical and the radicalophile. At the CCSD(T)/aug-cc-pVDZ//QCISD/cc-pVDZ level, energy barriers of 15.6 and 17.9 kJ mol(-1) are calculated for the attack of the acetyl radical at the carbon and nitrogen ends of methanimine, respectively. These barriers are 17.1 and 20.4 kJ mol(-1) at BHandHLYP/cc-pVDZ. In comparison, barriers of 34.0 and 23.4 kJ mol(-1) are calculated at BHandHLYP/cc-pVDZ for reaction of the acetyl radical at the 1- and 2-positions in aminoethylene, repectively. Natural bond orbital (NBO) analysis at the BHandHLYP/6-311G** level of theory reveals that SOMO --> pi*imine, pi imine--> SOMO, and LPN --> pi*C=O interactions are worth 90, 278, and 138 kJ mol-1, respectively, in the transition state (2) for reaction of acetyl radical at the nitrogen end of methanimine; similar interactions are observed for the chemistry involving aminoethylene. These multiorbital interactions are responsible for the unusual motion vectors associated with the transition states involved in these reactions. NBO analyses for the remaining systems in this study support the hypothesis that the acetyl radical is ambiphilic in nature.  相似文献   

11.
To evaluate weak intramolecular nonbonded Se...F interactions recently characterized for a series of o-selenobenzyl fluoride derivatives (Iwaoka et al., Chem. Lett. 1998, 969-970), the temperature dependence of the nuclear spin coupling between Se and F (J(Se...F)) was investigated for 2-(fluoromethyl)phenylselenenyl cyanate (1a) and bis[2-(fluoromethyl)phenyl] diselenide (1e) in CD2Cl2 and CD3CN. A significant increase in the magnitude of J(Se...F) was observed for both 1a and 1e upon lowering temperature, whereas the values of J(Se...F) for the corresponding trifluoromethyl compounds slightly reduced or remained unchanged at low temperatures. Application of the rapid equilibrium model between two possible conformers revealed that conformer A with an intramolecular Se...F interaction is more stable in enthalpy (DeltaH) by 1.23 kcal/mol for 1a (in CD2Cl2) and by 0.85 and 0.83 kcal/mol for 1e (in CD2Cl2 and CD3CN, respectively) than conformer B, which does not have close Se...F contact. The negligible solvent effects for 1e suggested marginal electrostatic nature of the Se...F interactions. Instead, importance of the n(F) -->sigma*(Se-X) orbital interaction was suggested by quantum chemical (QC) calculations and the natural bond orbital (NBO) analysis.  相似文献   

12.
Organic molecules possessing intramolecular charge-transfer properties (D-pi-A type molecules) are of key interest particularly in the development of new optoelectronic materials as well as photoinduced magnetism. One such class of D-pi-A molecules that is of particular interest contains photoswitchable intramolecular charge-transfer states via a photoisomerizable pi-system linking the donor and acceptor groups. Here we report the photophysical and electronic properties of the trans to cis isomerization of 1-(pyridin-4-yl)-2-(N-methylpyrrol-2-yl)ethene ligand (mepepy) in aqueous solution using photoacoustic calorimetry (PAC) and theoretical methods. Density functional theory (DFT) calculations demonstrate a global energy difference between cis and trans isomers of mepepy to be 8 kcal mol(-1), while a slightly lower energy is observed between the local minima for the trans and cis isomers (7 kcal mol(-1)). Interestingly, the trans isomer appears to exhibit two ground-state minima separated by an energy barrier of approximately 9 kcal mol(-1). Results from the PAC studies indicate that the trans to cis isomerization results in a negligible volume change (0.9 +/- 0.4 mL mol(-1)) and an enthalpy change of 18 +/- 3 kcal mol(-1). The fact that the acoustic waves associated with the trans to cis transition of mepepy overlap in frequency with those of a calorimetric reference implies that the conformational transition occurs faster than the approximately 50 ns response time of the acoustic detector. Comparison of the experimental results with theoretical studies provide evidence for a mechanism in which the trans to cis isomerization of mepepy results in the loss of a hydrogen bond between a water molecule and the pyridine ring of mepepy.  相似文献   

13.
Analysis of phenyl-perfluorophenyl stacking synthon, C-H...F, C-F...pi interactions, and F...F tetramer in three closely related azine crystal structures shows the dominance of Ar-ArF synthon while other interactions are turned on/off depending on the H/F stoichiometry in the molecule.  相似文献   

14.
Ab initio and DFT calculations reveal that oxyacyl radicals add to imines and electron-rich olefins through simultaneous SOMO-pi*, SOMO-pi and pi*-HOMO interactions between the radical and the radicalophile. At the BHandHLYP/aug-cc-pVDZ level, energy barriers of 20.3 and 22.0 kJ mol(-1) are calculated for the attack of methoxycarbonyl radical at the carbon and nitrogen ends of methanimine, respectively. In comparison, barriers of 22.0 and 8.6 kJ mol(-1) are calculated at BHandHLYP/aug-cc-pVDZ for reaction of methoxycarbonyl radical at the 1- and 2-positions in aminoethylene, respectively. Natural bond orbital (NBO) analysis at the BHandHLYP/6-311G** level of theory reveals that SOMO-pi*, SOMO-pi and pi*-LP interactions are worth 111, 394 and 55 kJ mol(-1) respectively in the transition state (8) for reaction of oxyacyl radical at the nitrogen end of methanimine; similar interactions are observed for the chemistry involving aminoethylene. These multi-component interactions are responsible for the unusual motion vectors associated with the transition states involved in these reactions.  相似文献   

15.
Pyridine carboxamides are a class of medicinal agents with activity that includes the reduction of iron-induced renal damage, the regulation of nicotinamidase activity, and radio- and chemosensitization. Such pharmacological activities, and the prevalence of the carboxamide moiety and the importance of amide rotations in biology, motivate detailed investigation of energetics in these systems. In this study, we report the use of dynamic nuclear magnetic resonance to measure the amide rotational barriers in the pyridine carboxamides picolinamide and nicotinamide. The activation enthalpies and entropies of DeltaH++ = 12.9 +/- 0.3 kcal/mol and DeltaS++ = -7.7 +/- 0.9 cal/mol K for nicotinamide and DeltaH++ = 18.3 +/- 0.4 kcal/mol and DeltaS++ = +1.3 +/- 1.0 cal/mol K for picolinamide report a substantial energetic difference for these regioisomers. Ab initio calculations of the rotational barriers are in good agreement with the experimentally determined values and help partition the 5.4 kcal/mol enthalpy difference into its major contributions. Of principal importance are the variations in steric interactions in the ground states of picolinamide and nicotinamide, superior pi electron donation from the pyridine ring in the transition state of nicotinamide, and an intramolecular hydrogen bond in the ground state of picolinamide.  相似文献   

16.
Dimers composed of benzene (Bz), 1,3,5-triazine (Tz), cyanogen (Cy) and diacetylene (Di) are used to examine the effects of heterogeneity at the molecular level and at the cluster level on pi...pi stacking energies. The MP2 complete basis set (CBS) limits for the interaction energies (E(int)) of these model systems were determined with extrapolation techniques designed for correlation consistent basis sets. CCSD(T) calculations were used to correct for higher-order correlation effects (deltaE(CCSD)(T)(MP2)) which were as large as +2.81 kcal mol(-1). The introduction of nitrogen atoms into the parallel-slipped dimers of the aforementioned molecules causes significant changes to E(int). The CCSD(T)/CBS E(int) for Di-Cy is -2.47 kcal mol(-1) which is substantially larger than either Cy-Cy (-1.69 kcal mol(-1)) or Di-Di (-1.42 kcal mol(-1)). Similarly, the heteroaromatic Bz-Tz dimer has an E(int) of -3.75 kcal mol(-1) which is much larger than either Tz-Tz (-3.03 kcal mol(-1)) or Bz-Bz (-2.78 kcal mol(-1)). Symmetry-adapted perturbation theory calculations reveal a correlation between the electrostatic component of E(int) and the large increase in the interaction energy for the mixed dimers. However, all components (exchange, induction, dispersion) must be considered to rationalize the observed trend. Another significant conclusion of this work is that basis-set superposition error has a negligible impact on the popular deltaE(CCSD)(T)(MP2) correction, which indicates that counterpoise corrections are not necessary when computing higher-order correlation effects on E(int). Spin-component-scaled MP2 (SCS-MP2 and SCSN-MP2) calculations with a correlation-consistent triple-zeta basis set reproduce the trends in the interaction energies despite overestimating the CCSD(T)/CBS E(int) of Bz-Tz by 20-30%.  相似文献   

17.
The local structure of the sulfur atom of methanethiolate and ethanethiolate on the Cu(111) and Cu(100) surfaces was investigated from first principles employing the periodic supercell approach in the framework of density functional theory. On the 111 surface, we investigated the (square root 3 x square root 3)R30 degrees and (2 x 2) structures, whereas on the 100 surface, we investigated the p(2 x 2) and c(2 x 2) structures. The landscape of the potential energy surface on each metal surface presents distinctive features that explain the local adsorption structure of thiolates found experimentally. On the Cu(111) surface, the energy difference between the hollow and bridge sites is only 3 kcal/mol, and consequently, adsorption sites ranging from the hollow to the bridge site were observed for increasing surface coverages. On the Cu(100) surface, there is a large energy difference of 12 kcal/mol between the hollow and bridge sites, and therefore, only the 4-fold coordination was observed. The high stabilization of thiolates on the hollow site of Cu(100) may be the driving force for the pseudosquare reconstruction observed experimentally on Cu(111). Density of states analysis and density difference plots were employed to characterize the bonding on different surface sites. Upon interaction with the metal d bands, the pi* orbital of methanethiolate splits into several peaks. The two most prominent peaks are located on either edge of the metal d band. They correspond to bonding and antibonding S-Cu interactions. In the case of ethanethiolate, all the back-bonds are affected by the surface bonding, leading to alternating regions of depletion and accumulation of charge in the successive bonds.  相似文献   

18.
The mechanism of light-induced excited spin state trapping (LIESST) of [FeIII(pap)2]+ (pap = N-2-pyridylmethylidene-2-hydroxyphenylaminato) was discussed on the basis of potential energy surfaces (PESs) of several important spin states, where the PESs were evaluated with the DFT(B3LYP) method. The PES of the quartet spin state crosses those of the doublet and sextet spin states around its minimum. This means that the spin transition occurs from the quartet spin state to either the doublet spin state or the sextet spin state around the PES minimum of the quartet spin state. The PES minimum of the sextet spin state is slightly less stable than that of the doublet spin state by 0.18 eV (4.2 kcal/mol). This small energy difference is favorable for the LIESST. The doublet-sextet spin crossover point is 0.41 eV (9.6 kcal/mol) above the PES minimum of the sextet spin state. Because of this considerably large activation barrier, the thermal spin transition and the tunneling process do not occur easily. In the doublet spin state, the ligand to ligand charge transfer (LLCT) transition is calculated to be 2.16 eV with the TD-DFT(B3LYP) method, in which the pi orbital of the phenoxy moiety and the pi* orbital of the imine moiety in the pap ligand participate. This transition energy is moderately smaller than the visible light of 550 nm used experimentally. In the sextet spin state, the ligand to metal charge transfer (LMCT) transition is calculated to be at 2.36 eV, which is moderately higher than the visible light (550 nm). These results indicate that the irradiation of the visible light induces the LIESST to generate the sextet spin state but the reverse-LIESST is also somewhat induced by the visible light, indicating that the complete spin conversion from the doublet spin state to the sextet one does not occur, as reported experimentally.  相似文献   

19.
The reaction mechanisms of the electrocyclic ring closure of bis(allene) and vinylallene were studied by ab initio MO methods. The conrotatory and disrotatory pathways of the electrocyclic reactions from bis(allene) to bis(methylene)cyclobutene were determined by a CASSCF method. The transition state on the conrotatory pathway is 26.8 kcal/mol above bis(allene) and about 23 kcal/mol lower than that on the disrotatory pathway at a MRMP calculation level. The activation energy on the conrotatory pathway is lower by 23 kcal/mol than that of the electrocyclic reaction of butadiene. This lower energy barrier comes from the interactions of the "side pi orbitals" of the allene group. The interaction of the "vertical pi orbitals" of the allene group is predominant at the early stage of the reaction. The activation energy of the electrocyclic reaction of vinylallene is about 8.5 kcal/mol higher than that on the conrotatory pathway of bis(allene).  相似文献   

20.
High-level ab initio calculations employing the multireference configuration interaction and coupled clusters methods with a correlation-consistent sequence of basis sets have been used to obtain accurate potential energy curves for the complex of the sodium cation with the iodine atom. Potential curves for the first two electronic Lambda-S states have very different characters: the potential for the 2pi state has a well depth of approximately 10 kcal/mol, while the 2sigma state is essentially unbound. This difference is rationalized in terms of the anisotropic interaction of the quadrupole moment of the iodine atom with the sodium cation, which is stabilizing in the case of the 2pi state and destabilizing in the case of the 2sigma state. The effects of spin-orbit coupling have been accounted for with both ab initio and semiempirical approaches, which have been found to give practically the same results. Inclusion of spin-orbit interactions does not affect the X(omega = 32) ground state, which retains its 2pi character, but it results in two omega = 12 spin-orbit states, with mixed 2sigma and 2pi characters and binding energies roughly half of that of the ground spin-orbit state. Complete basis set (CBS) extrapolations of potential curves, binding energies, and equilibrium geometries were also performed, and used to calculate a number of rovibronic parameters for the Na+...I* complex and to parameterize model potentials. The final CBS-extrapolated and zero-point vibrational energy-corrected binding energy is 10.2 kcal/mol. Applications of the present results for simulations of NaI photodissociation femtosecond spectroscopy are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号