首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
2.
Quantum-chemistry-based many-body polarizable and two-body nonpolarizable atomic force fields were developed for alkyl nitrate liquids and pentaerythritol tetranitrate (PETN) crystal. Bonding, bending, and torsional parameters, partial charges, and atomic polarizabilities for the polarizable force field were determined from gas-phase quantum chemistry calculations for alkyl nitrate oligomers and PETN performed at the MP2/aug-cc-pvDz level of theory. Partial charges for the nonpolarizable force field were determined by fitting the dipole moments and electrostatic potential to values for PETN molecules in the crystal phase obtained from molecular dynamics simulations using the polarizable force field. Molecular dynamics simulations of alkyl nitrate liquids and two polymorphs of PETN crystal demonstrate the ability of the quantum-chemistry-based force fields to accurately predict thermophysical and mechanical properties of these materials.  相似文献   

3.
Experimental measurements of edge-to-face aromatic interactions have been used to test a series of molecular mechanics force fields. The experimental data were determined for a range of differently substituted aromatic rings using chemical double mutant cycles on hydrogen-bonded zipper complexes. These complexes were truncated for the purposes of the molecular mechanics calculations so that problems of conformational searching and the optimisation of large structures could be avoided. Double-mutant cycles were then carried out in silico using these truncated systems. Comparison of the experimental aromatic interaction energies and the X-ray crystal structures of these truncated complexes with the calculated data show that conventional molecular mechanics force fields (MM2, MM3, AMBER and OPLS) do not perform well. However, the XED force field which explicitly represents electron anisotropy as an expansion of point charges around each atom reproduces the trends in interaction energy and the three-dimensional structures exceedingly well. Collapsing the XED charges onto atom centres or the use of semi-empirical atom-centred charges within the XED force field gives poor results. Thus the success of XED is not related to the methods used to assign the atomic charge distribution but can be directly attributed to the use of off-atom centre charges.  相似文献   

4.
5.
Validity of a force field with explicit treatment of electrostatic polarization in a form of inducible point dipoles for computing acidity constants was tested by calculating absolute pK(a) values of substituted phenols, methanol, and imidazole in water with the molecular dynamics technique. The last two systems were selected as tyrosine and histidine side-chain analogues, respectively. The solvent was represented by an explicit polarizable water model. Similar calculations were also performed with a modified OPLS-AA nonpolarizable force field. The resulting pK(a) values were compared with available experimental data. While the nonpolarizable force field yields errors of about 5 units in the absolute pK(a) values for the phenols and methanol, the polarizable force field produces the acidity constant values within a ca. 0.8 units accuracy. For the case of imidazole, the fixed-charges force field was capable of reproducing the experimental value of pK(a) (6.4 versus the experimental 7.0 units), but only at a cost of dramatically underestimating dimerization energy for the imidazolium-water complex. At the same time, the polarizable force field yields an even more accurate result of pK(a) = 6.96 without any sacrifice of the accuracy in the dimerization energy. It has also been demonstrated that application of Ewald summation for the long-range electrostatics is important, and substitution of a simple cutoff procedure with Born correction for ions can lead to underestimation of absolute pK(a) values by more than 5 units. The accuracy of the absolute acidity constants computed with the polarizable force field is very encouraging and opens road for further tests on more diverse organic molecules sets, as well as on proteins.  相似文献   

6.
The Thole induced point dipole model is combined with three different point charge fitting methods, Merz–Kollman (MK), charges from electrostatic potentials using a grid (CHELPG), and restrained electrostatic potential (RESP), and two multipole algorithms, distributed multipole analysis (DMA) and Gaussian multipole model (GMM), which can be used to describe the electrostatic potential (ESP) around molecules in molecular mechanics force fields. This is done to study how the different methods perform when intramolecular polarizability contributions are self‐consistently removed from the fitting done in the force field parametrization. It is demonstrated that the polarizable versions of the partial charge models provide a good compromise between accuracy and computational efficiency in describing the ESP of small organic molecules undergoing conformational changes. For the point charge models, the inclusion of polarizability reduced the the average root mean square error of ESP over the test set by 4–10%. © 2015 Wiley Periodicals, Inc.  相似文献   

7.
Condensed‐phase computational studies of molecules using molecular mechanics approaches require the use of force fields to describe the energetics of the systems as a function of structure. The advantage of polarizable force fields over nonpolarizable (or additive) models lies in their ability to vary their electronic distribution as a function of the environment. Toward development of a polarizable force field for biological molecules, parameters for a series of sulfur‐containing molecules are presented. Parameter optimization was performed to reproduce quantum mechanical and experimental data for gas phase properties including geometries, conformational energies, vibrational spectra, and dipole moments as well as for condensed phase properties such as heats of vaporization, molecular volumes, and free energies of hydration. Compounds in the training set include methanethiol, ethanethiol, propanethiol, ethyl methyl sulfide, and dimethyl disulfide. The molecular volumes and heats of vaporization are in good accordance with experimental values, with the polarizable model performing better than the CHARMM22 nonpolarizable force field. Improvements with the polarizable model were also obtained for molecular dipole moments and in the treatment of intermolecular interactions as a function of orientation, in part due to the presence of lone pairs and anisotropic atomic polarizability on the sulfur atoms. Significant advantage of the polarizable model was reflected in calculation of the dielectric constants, a property that CHARMM22 systematically underestimates. The ability of this polarizable model to accurately describe a range of gas and condensed phase properties paves the way for more accurate simulation studies of sulfur‐containing molecules including cysteine and methionine residues in proteins. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

8.
We present the theoretical evaluation of new AMBER force field parameters for 12 copper-based nucleases with bis(2-pyridylmethyl) amine, 2,2′-dipyridylamine, imidazole, N,N-bis(2-benzimidazolylmethyl) amine and their derivative ligands based on first-principles electronic structure calculations at the B3LYP level of theory. A three-point approach was developed to accurately and efficiently evaluate the force field parameters for the copper-based nucleases with the ligands. The protocol of RESP atomic charges has been used to calculate the atomic charge distributions of the studied copper-based nucleases. The evaluated force field parameters and RESP atomic charges have been successfully applied in the testing molecular mechanics calculations and molecular dynamics simulations on the nucleases and the nuclease–DNA complexes, respectively. It has been demonstrated that the developed force field parameters and atomic charges can consistently reproduce molecular geometries and conformations in the available X-ray crystal structures and can reasonably predict the interaction properties of the nucleases with DNA. The developed force field parameters in this work provide an extension of the AMBER force field for its application to computational modeling and simulations of the copper-based artificial nucleases associated with DNA.  相似文献   

9.
The solution conformation of alpha-conotoxin GI and its two single disulfide analogues are simulated using a polarizable force field in combination with the molecular fragmentation quantum chemical calculation. The polarizability is explicitly described by allowing the partial charges and fragment dipole moments to be variables, with values coming from the linear-scaling energy-based molecular fragmentation calculations at the B3LYP/6-31G(d) level. In comparison with the full quantum chemical calculations, the fragmentation approaches can yield precise ground-state energies, dipole moments, and static polarizabilities for peptides. The B3LYP/6-31G(d) charges and fragment-centered dipole moments are introduced in calculations of electrostatic terms in both AmberFF03 and OPLS force fields. Our test calculations on the gas-phase glucagon (PDB code: 1gcn) and solvated alpha-conotoxin GI (PDB code: 1not) demonstrate that the present polarization model is capable of describing the structural properties (such as the relative conformational energies, intramolecular hydrogen bonds, and disulfide bonds) with accuracy comparable to some other polarizable force fields (ABEEM/MM and OPLS-PFF) and the quantum mechanics/molecular mechanics (QM/MM) hybrid model. The employment of fragment-centered dipole moments in calculations of dipole-dipole interactions can save computational time in comparison with those polarization models using atom-centered dipole moments without much loss of accuracy. The molecular dynamics simulations using the polarizable force field demonstrate that two single disulfide GI analogues are more flexible and less structured than the native alpha-conotoxin GI, in agreement with NMR experiments. The polarization effect is important in simulations of the folding/unfolding process of solvated proteins.  相似文献   

10.
A new intermolecular force field for nitrogen atoms in organic molecules was derived from a training dataset of 76 observed azahydrocarbon crystal structures and 11 observed heats of sublimation. The previously published W99 force field for hydrogen, carbon, and oxygen was thus extended to include nitrogen atoms. Nitrogen atoms were divided into four classes: N(1) for triply bonded nitrogen, N(2) for nitrogen with no bonded hydrogen (except the triple bonded case), N(3) for nitrogen with one bonded hydrogen, and N(4) for nitrogen with two or more bonded hydrogens. H(4) designated hydrogen bonded to nitrogen. Wavefunctions of 6‐31g** quality were calculated for each molecule and the molecular electric potential (MEP) was modeled with net atomic and supplementary site charges. Lone pair electron charge sites were included for nitrogen atoms where appropriate, and methylene bisector charges were used for CH2 and CH3 groups when fitting the MEP. X? H bond distances were set to standard values for the wave function calculation and then foreshortened by 0.1 Å for the MEP and force field fitting. Using the force field optimized to the training dataset, each azahydrocarbon crystal structure was relaxed by intermolecular energy minimization. Predicted maximum changes in unit cell edge lengths for each crystal were 3% or less. The complete force field for H, C, N, and O atoms was tested by intermolecular energy relaxation of nucleoside and peptide molecular crystals. Even though these molecules were not included in any of the training datasets for the force field, agreement with their observed crystal structures was very good, with predicted unit cell edge shifts usually less than 2%. These tests included crystal structures of representatives of all eight common nucleosides found in DNA and RNA, 15 dipeptides, four tripeptides, two tetrapeptides, and a pentapeptide with two molecules in the asymmetric unit. © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 1154–1166, 2001  相似文献   

11.
12.
The hydration of K(+) is studied using a hierarchy of theoretical approaches, including ab initio Born-Oppenheimer molecular dynamics and Car-Parrinello molecular dynamics, a polarizable force field model based on classical Drude oscillators, and a nonpolarizable fixed-charge potential based on the TIP3P water model. While models based more directly on quantum mechanics offer the possibility to account for complex electronic effects, polarizable and fixed-charges force fields allow for simulations of large systems and the calculation of thermodynamic observables with relatively modest computational costs. A particular emphasis is placed on investigating the sensitivity of the polarizable model to reproduce key aspects of aqueous K(+), such as the coordination structure, the bulk hydration free energy, and the self diffusion of K(+). It is generally found that, while the simple functional form of the polarizable Drude model imposes some restrictions on the range of properties that can simultaneously be fitted, the resulting hydration structure for aqueous K(+) agrees well with experiment and with more sophisticated computational models. A counterintuitive result, seen in Car-Parrinello molecular dynamics and in simulations with the Drude polarizable force field, is that the average induced molecular dipole of the water molecules within the first hydration shell around K(+) is slightly smaller than the corresponding value in the bulk. In final analysis, the perspective of K(+) hydration emerging from the various computational models is broadly consistent with experimental data, though at a finer level there remain a number of issues that should be resolved to further our ability in modeling ion hydration accurately.  相似文献   

13.
14.
With the continuing advances in computational hardware and novel force fields constructed using quantum mechanics, the outlook for non-additive force fields is promising. Our work in the past several years has demonstrated the utility of polarizable force fields, in our hands those based on the charge equilibration formalism, for a broad range of physical and biophysical systems. We have constructed and applied polarizable force fields for small molecules, proteins, lipids, and lipid bilayers and recently have begun work on carbohydrate force fields. The latter area has been relatively untouched by force field developers with particular focus on polarizable, non-additive interaction potential models. In this review of our recent work, we discuss the formalism we have adopted for implementing the charge equilibration method for phase-dependent polarizable force fields, lipid molecules, and small-molecule carbohydrates. We discuss the methodology, related issues, and briefly discuss results from recent applications of such force fields.  相似文献   

15.
Molecular dynamics simulations are being applied to increasingly complex systems, including those involving small endogenous compounds and drug molecules. In order to obtain meaningful and accurate data from these simulations, high-quality topologies for small molecules must be generated in a manner that is consistent with the derivation of the force field applied to the system. Often, force fields are designed for use with macromolecules such as proteins, making their transferability to other species challenging. Investigators are increasingly attracted to automated topology generation programs, although the quality of the resulting topologies remains unknown. Here we assess the applicability of the popular PRODRG server that generates small-molecule topologies for use with the GROMOS family of force fields. We find that PRODRG does not reproduce topologies for even the most well-characterized species in the force field due to inconsistent charges and charge groups. We assessed the effects of PRODRG-derived charges on several systems: pure liquids, amino acids at a hydrophobic-hydrophilic interface, and an enzyme-cofactor complex. We found that partial atomic charges generated by PRODRG are largely incompatible with GROMOS force fields, and the behavior of these systems deviates substantially from that of simulations using GROMOS parameters. We conclude by proposing several points as "best practices" for parametrization of small molecules under the GROMOS force fields.  相似文献   

16.
Formulas for evaluating analytic energy gradient are derived for combined time-dependent density functional theory (TDDFT) and polarizable force field methods that incorporate dipole polarizability tensors and linearly induced point dipoles. The Z-vector method for determining relaxed one-particle difference density matrix in regular TDDFT methods is extended to include induced dipoles. The analytic gradient of the mutual polarization energy of the force field and the TDDFT excited state can be formulated by using the TDDFT difference density-induced dipoles and the transition state density-induced dipoles. All the forces and torques involving induced dipoles can be efficiently evaluated using standard electrostatic formulas as if the induced dipoles were permanent dipoles. The formulas are given in the most general form and are applicable to various flavors of polarizable force fields. Implementation and tests with a polarizable five-point water model show that the formulas are rigorous. The carbonyl vibration modes and infrared spectrum intensities of a cluster formed by acetone and two water molecules are studied.  相似文献   

17.
The quantum chemistry polarizable force field program (QuanPol) is implemented to perform combined quantum mechanical and molecular mechanical (QM/MM) calculations with induced dipole polarizable force fields and induced surface charge continuum solvation models. The QM methods include Hartree–Fock method, density functional theory method (DFT), generalized valence bond theory method, multiconfiguration self‐consistent field method, Møller–Plesset perturbation theory method, and time‐dependent DFT method. The induced dipoles of the MM atoms and the induced surface charges of the continuum solvation model are self‐consistently and variationally determined together with the QM wavefunction. The MM force field methods can be user specified, or a standard force field such as MMFF94, Chemistry at Harvard Molecular Mechanics (CHARMM), Assisted Model Building with Energy Refinement (AMBER), and Optimized Potentials for Liquid Simulations‐All Atom (OPLS‐AA). Analytic gradients for all of these methods are implemented so geometry optimization and molecular dynamics (MD) simulation can be performed. MD free energy perturbation and umbrella sampling methods are also implemented. © 2013 Wiley Periodicals, Inc.  相似文献   

18.
To isolate the effects of the inclusion of polarizability in the force field model on the structure and dynamics of the solvating water in differing electrostatic environments of proteins, we present the results of molecular dynamics simulations of the bovine pancreatic trypsin inhibitor (BPTI) in water with force fields that explicitly include polarization for both the protein and the water. We use three model potentials for water and two model potentials for the protein. Two of the water models and one of the protein models are polarizable. A total of six systems were simulated representing all combinations of these polarizable and nonpolarizable protein and water force fields. We find that all six systems behave in a similar manner in regions of the protein that are weakly electrostatic (either hydrophobic or weakly hydrophilic). However, in the vicinity of regions of the protein with relatively strong electrostatic fields (near positively or negatively charged residues), we observe that the water structure and dynamics are dependent on both the model of the protein and the model of the water. We find that a large part of the dynamical dependence can be described by small changes in the local environments of each region that limit the local density of non-hydrogen-bonded waters, precisely the water molecules that facilitate the dynamical relaxation of the water-water hydrogen bonds. We introduce a simple method for rescaling for this effect. When this is done, we are able to effectively isolate the influence of polarizability on the dynamics. We find that the solvating water's relaxation is most affected when both the protein and the water models are polarizable. However, when only one model (or neither) is polarizable, the relaxation is similar regardless of the models used.  相似文献   

19.
应用ABEEMσπ极化力场,对Zn2+水溶液体系进行分子动力学模拟,探讨Zn2+的配位微结构和配体水交换反应。水分子模型采用ABEEM-7P精细水模型。模拟后对体系结构、电荷及动力学性质进行细致分析。结构分析表明,平衡体系中Zn2+的第一层配位数为6,这与实验值是一致的。水交换反应过程中,溶剂水由O-Zn-O角分线斜上(下)方进攻Zn2+,配位水由O-Zn-O角分线斜下(上)方逐渐远离。极化力场模拟时Zn2+与交换水间的距离变化波动较大,而固定电荷力场的波动较小。模拟发现,极化力场的径向分布函数能精细地展示第二、三层配体的配位微结构,第二配位层存在靠近Zn2+的亚壳层,能与第一水合层发生水交换反应,充分体现了Zn2+的极化效应。本文阐明了水交换反应中,Zn2+位点电荷与交换水中氧原子孤对电子位点电荷的规律性变化,从电荷的角度解释了水交换反应的合理性。ABEEMσπ极化力场模拟Zn2+水溶液获得第一水合层的平均配位驻留时间为2.0×10-9 s,在实验值范围内,说明ABEEMσπ极化力场可以合理地模拟Zn2+水溶液体系。  相似文献   

20.
Thermodynamic measurements of the solvation of salts and electrolytes are relatively straightforward, but it is not possible to separate total solvation free energies into distinct cation and anion contributions without reference to an additional extrathermodynamic assumption. The present work attempts to resolve this difficulty using molecular dynamics simulations with the AMOEBA polarizable force field and perturbation techniques to directly compute absolute solvation free energies for potassium, sodium, and chloride ions in liquid water and formamide. Corresponding calculations are also performed with two widely used nonpolarizable force fields. The simulations with the polarizable force field accurately reproduce in vacuo quantum mechanical results, experimental ion-cluster solvation enthalpies, and experimental solvation free energies for whole salts, while the other force fields do not. The results indicate that calculations with a polarizable force field can capture the thermodynamics of ion solvation and that the solvation free energies of the individual ions differ by several kilocalories from commonly cited values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号