首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Solid-state 63Cu and 65Cu NMR experiments have been conducted on a series of inorganic and organometallic copper(I) complexes possessing a variety of spherically asymmetric two-, three-, and four-coordinate Cu coordination environments. Variations in structure and symmetry, and corresponding changes in the electric field gradient (EFG) tensors, yield 63/65Cu quadrupolar coupling constants (CQ) ranging from 22.0 to 71.0 MHz for spherically asymmetric Cu sites. These large quadrupolar interactions result in spectra featuring quadrupolar-dominated central transition patterns with breadths ranging from 760 kHz to 6.7 MHz. Accordingly, Hahn-echo and/or QCPMG pulse sequences were applied in a frequency-stepped manner to rapidly acquire high S/N powder patterns. Significant copper chemical shielding anisotropies (CSAs) are also observed in some cases, ranging from 1000 to 1500 ppm. 31P CP/MAS NMR spectra for complexes featuring 63/65Cu-31P spin pairs exhibit residual dipolar coupling and are simulated to determine both the sign of CQ and the EFG tensor orientations relative to the Cu-P bond axes. X-ray crystallographic data and theoretical (Hartree-Fock and density functional theory) calculations of 63/65Cu EFG and CS tensors are utilized to examine the relationships between NMR interaction tensor parameters, the magnitudes and orientations of the principal components, and molecular structure and symmetry.  相似文献   

2.
The source of protons associated with the ligand loss channel of HX((n - 1)+) from [Pt(II)(dien)X](n+) (X = Cl, Br and I for n = 1 and X = NC(5)H(5) for n = 2) in the gas phase was investigated by deuterium-labelling studies. The results of these studies indicate that these protons originate from both the amino groups and the carbon backbone of the dien ligand. In some instances (e.g. X = Br and I), the protons lost from the carbon backbone can be even more abundant than the protons lost from the amino groups. The gas-phase substitution reactions of coordinatively saturated [Pt(II)(L(3))L(a)](2+) complexes (L(3) = tpy or dien) were also examined using ion-molecule reactions. The outcome of the ion-molecule reactions depends on both the ancillary ligand (L(3)) as well as the leaving group (L(a)). [Pt(II)(tpy)L(a)](2+) complexes undergo substitution reactions, with a faster rate when L(a) is a good leaving group, while the [Pt(II)(dien)L(a)](2+) complex undergoes a proton transfer reaction.  相似文献   

3.
Summary Copper(II) complexes with a tridentate chelating ligand within the general 2N, X (X = O or S) donor class, containing abis(benzimidazolyl) donor set, were prepared and characterized. X-band e.p.r. spectra of the complexes indicateg >g and the largeg and lowA have been interpreted in terms of a distorted basal plane. Superimposed on theg component are five SHF lines withA N = 16±2G, supporting the interaction of two nitrogen atoms with the copper nucleus. Thus, the basal plane of the complex comprises 2N atoms, with the ligand hetero atom being axially coordinated.  相似文献   

4.
The preparation and physical properties of some new copper (I) isocyanide complexes containing other neutral donor ligands such as Ph3P, pyridine(Py), 1,10- phenanthroline (Phen), bipyridine (Bipy), or 1,2-bis(diphhenylphosphino)ethane (Dipphos) are described. Possible structures for these new complexes, in the solid state and in solution, are discussed.  相似文献   

5.
The bis-pyridine tridentate ligands (6-R-2-pyridylmethyl)-(2-pyridylmethyl) benzylamine (RDPMA, where R = CH(3), CF(3)), (6-R-2-pyridylmethyl)-(2-pyridylethyl) benzylamine (RPMPEA, where R = CH(3), CF(3)), and the bidentate ligand di-benzyl-(6-methyl-2-pyridylmethyl)amine (BiBzMePMA) have been synthesized and their copper(I) complexes oxidized in a methanol solution to afford self-assembled bis-micro-methoxo-binuclear copper(II) complexes (1, 2, 4, 6) or hydroxo- binuclear copper(II) complexes (3). Oxidation of the nonsubstituted DPMA (R = H) in dichloromethane gives a chloride-bridged complex (5). The crystal structures for [Cu(MeDPMA)(MeO)](2)(ClO(4))(2) (1), [Cu(RPMPEA)(MeO)](2)(ClO(4))(2) (for 2, R= Me, and for 4, R = CF(3)), [Cu(BiBzMePMA)(MeO)](2)(ClO(4))(2) (6), [Cu(FDPMA)(OH)](2)(ClO(4))(2) (3), and [Cu(DPMA)(Cl)](2)(ClO(4))(2) (5) have been determined, and their variable-temperature magnetic susceptibility has been measured in the temperature range of 10-300 K. The copper coordination geometries are best described as square pyramidal, except for 6, which is square planar, because of the lack of one pyridine ring in the bidentate ligand. In 1-4 and 6, the basal plane is formed by two pyridine N atoms and two O atoms from the bridging methoxo or hydroxo groups, whereas in 5, the bridging Cl atoms occupy axial-equatorial sites. Magnetic susceptibility measurements show that the Cu atoms are strongly coupled antiferromagnetically in the bis-methoxo complexes 1, 2, 4, and 6, with -2J > 600 cm(-)(1), whereas for the hydroxo complex 3, -2J = 195 cm(-)(1) and the chloride-bridged complex 5 shows a weak ferromagnetic coupling, with 2J = 21 cm(-)(1) (2J is an indicator of the magnetic interaction between the Cu centers).  相似文献   

6.
Summary Copper(II) complexes with the Schiff bases derived from Salicylaldehyde and its 5-chloro-, 5-bromo-, 5-nitro-, 3-ethoxy- and 3,5-dichloro derivatives, or from 2-hydroxy-1-naphthaldehyde ando-hydroxybenzylamine, have been synthesized and characterized on the basis of elemental analysis, i.r. and electronic spectra and magnetic susceptibility measurements. The Schiff bases behave as tridentate dibasic O, N and O donor ligands and form complexes with 11 metal: ligand stoichiometry which exhibit subnormal magnetic moments ( eff=0.88–0.98 B.M.) and are involved in strong antifer-romagnetic exchange (–J=482–525 cm–1). The complexes exhibit a d-d band atca. 1600 cm–1. A dimeric structure with aminophenolic oxygen atoms as the bridging atoms is proposed on the basis of i.r. and magnetic data.  相似文献   

7.
Homo- and heteroleptic copper(I) complexes obtained from various chelating bis-phosphine ligands and Cu(CH3CN)4BF4 have been used for the preparation of light emitting devices.  相似文献   

8.
A series of copper(II) complexes, CuL·imidazole, where L2? are tridentate Schiff base ligands formed by condensation of salicylaldehyde with a series of amino acids, have been synthesized. Visible spectral data indicate that copper(II) in these complexes are five coordinate in the solid state and in solution. Electrospray mass spectrometry has been used to show how these complexes react in alcohol/NaOH solutions with and without the presence of d-galactose. In the absence of d-galactose where the amino acid in the ligand is serine, the alcohol group on the ligand is converted to its alkyl ether after sonication of the solution for up to 4?h. In the presence of d-galactose, an alkoxy group is added to the ligands except for the ligand containing serine after sonication of the solutions for up to 4?h. At the same time, d-galactose is oxidized to its aldehyde. Where the ligand contains methionine, oxygen is also added to the ligand, most likely to the thioether sulfur.  相似文献   

9.
The structure and dioxygen-reactivity of copper(I) complexes R supported by N,N-bis(6-methylpyridin-2-ylmethyl)amine tridentate ligands L2R[R (N-alkyl substituent)=-CH2Ph (Bn), -CH2CH2Ph (Phe) and -CH2CHPh2(PhePh)] have been examined and compared with those of copper(I) complex (Phe) of N,N-bis[2-(pyridin-2-yl)ethyl]amine tridentate ligand L1(Phe) and copper(I) complex (Phe) of N,N-bis(pyridin-2-ylmethyl)amine tridentate ligand L3(Phe). Copper(I) complexes (Phe) and (PhePh) exhibited a distorted trigonal pyramidal structure involving a d-pi interaction with an eta1-binding mode between the metal ion and one of the ortho-carbon atoms of the phenyl group of the N-alkyl substituent [-CH2CH2Ph (Phe) and -CH2CHPh2(PhePh)]. The strength of the d-pi interaction in (Phe) and (PhePh) was weaker than that of the d-pi interaction with an eta2-binding mode in (Phe) but stronger than that of the eta1 d-pi interaction in (Phe). Existence of a weak d-pi interaction in (Bn) in solution was also explored, but its binding mode was not clear. Redox potentials of the copper(I) complexes (E1/2) were also affected by the supporting ligand; the order of E1/2 was Phe>R>Phe. Thus, the order of electron-donor ability of the ligand is L1Phe相似文献   

10.
New dioxouranium(VI) complexes with the tridentate dibasic Schiff bases derived from salicylaldehyde, 5-chlorosalicylaldehyde, 5-bromosalicylaldehyde, 5-nitrosalicylaldehyde, 3,5-dichlorosalicylaldehyde, 4-methoxysalicylaldehyde, 5-methoxysalicylaldehyde, 3-ethoxysalicylaldehyde, 2-hydroxy-1-naphthaldehyde and 2-aminoethanethiol have been synthesised by the reaction of methanolic solution of dioxouranium(VI) acetate dihydrate and the Schiff base. The Schiff bases behave as ONS tridentate donor dibasic ligands. The complexes are of the type UO2L · CH3OH, where LH2 = the tridentate, dibasic Schiff base. The complexes have been characterised on the basis of elemental analysis, infrared and electronic spectra, conductance, magnetic susceptibility and molecular weight measurements. The complexes are diamagnetic, monomers, and octahedral.  相似文献   

11.
A useful criterion of linear or bent geometry at Nα of diazenido (-NαNβR) ligands is afforded by 15N NMR. A very large downfield shift (ca. 350 ppm) of the Nα resonance is reported for the “doubly-bent” diazenido ligands in [RhCl2(15NNC6H4R-4)(PPh3)2] (R = H or NO2) compared with the “singly-bent” diazenido ligands in trans-[MX(15N2R1)(dppe)2] (M = Mo or W, X = Cl or Br, R1 = Et or COMe), [ReCl2(15N2COC6H5)(C5H5N)(PPh3)2] and [RuCl3(15NNC6H5)(PPh3)2].  相似文献   

12.
Far i.r. spectra are reported for 34 adducts of phosphine and amine bases with copper (I) halides in which the copper atom is coordinated to only one terminal halide. CuX stretching frequencies are assigned for all of the chloro complexes and for most of the bromo and iodo complexes. The CuX stretching frequencies have been found to depend primarily on the CuX̵ bond length, and appear to be relatively independent of the nature of the coordinating ligands. Best fit curves to the experimental data correspond to a dependence of ν(CuX) on the inverse nth power of r(CuX), where n is approximately equal to 5. Metal—halogen bond stretching force constants have been calculated for copper(I) and related silver(I) and gold(I) halide complexes assuming that the MX entity behaves as an uncoupled diatomic molecule. The results show that for three-coordinate copper(I) the force constants decrease in the order CuCl>CuBr>CuI and that the same trend is shown for four-coordinate copper(I) complexes, but the differences are considerably smaller than for the three-coordinate case. Analogous trends are found for the two- and three-coordinate gold compounds.  相似文献   

13.
The ESR spectra of a series of CuII Schiff base complexes have been investigated in liquid and frozen solutions. The structures of these complexes are estimated on the basis of superhyperfine interactions and molecular orbital coefficients α2 and β21 calculated from copper hyperfine parameters.  相似文献   

14.
Summary Copper(II) salts were reacted with two diamino-dithioether ligands, i.e. 1,3-di(o-aminophenylthio)propane (abbreviated H2L1) and 1,2-di(o-aminophenylthio)xylene (abbreviated H2L2). Mixtures of copper(I) and copper(II) complexes were obtained with Cl and ClO 4 counterions. The major products were the copper(I) complexes, which were obtained pure after recrystallisation from MeCN-MeOH. The ligands lose two protons from the amine functions to form copper(I) complexes of general formula [CuL]X, where X = ClO 4 or Cl. The complexes were oxidised to [CuL]X2 with H2O2 in DMF. Cu(NO3)2 on the other hand gave [CuH2LNO3]NO3.  相似文献   

15.
16.
The copper(II) and copper(I) complexes of the chelating ligands 2,6-bis(benzimidazol-2'-ylthiomethyl)pyridine (bbtmp) and N,N-bis(benzimidazol-2'-ylthioethyl)methylamine (bbtma) have been isolated and characterized by electronic and EPR spectra. The molecular structures of a redox pair of Cu(II/I) complexes, viz., [Cu(bbtmp)(NO(3))]NO(3), 1, and [Cu(bbtmp)]NO(3), 2, and of [Cu(bbtmp)Cl], 3, have been determined by single-crystal X-ray crystallography. The cation of the green complex [Cu(bbtmp)(NO(3))]NO(3) possesses an almost perfectly square planar coordination geometry in which the corners are occupied by the pyridine and two benzimidazole nitrogen atoms of the bbtmp ligand and an oxygen atom of the nitrate ion. The light-yellow complex [Cu(bbtmp)]NO(3) contains copper(I) with trigonal planar coordination geometry constituted by the pyridine and two benzimidazole nitrogen atoms of the bbtmp ligand. In the yellow chloride complex [Cu(bbtmp)Cl] the asymmetric unit consists of two complex molecules that are crystallographically independent. The coordination geometry of copper(I) in these molecules, in contrast to the nitrate, is tetrahedral, with pyridine and two benzimidazole nitrogen atoms of bbtmp ligand and the chloride ion occupying the apexes. The above coordination structures are unusual in that the thioether sulfurs are not engaged in coordination and the presence of two seven-membered chelate rings facilitates strong coordination of the benzimidazole nitrogens and discourage any distortion in Cu(II) coordination geometry. The solid-state coordination geometries are retained even in solution, as revealed by electronic, EPR, and (1)H NMR spectra. The electrochemical behavior of the present and other similar CuN(3) complexes has been examined, and the thermodynamic aspects of the electrode process are correlated to the stereochemical reorganizations accompanying the redox changes. The influence of coordinated pyridine and amine nitrogen atoms on the spectral and electrochemical properties has been discussed.  相似文献   

17.
To achieve a net-neutral coordination unit in radiopharmaceuticals with a fac-M(CO)3+ core (M = Tc, Re), facially coordinated monoanionic tridentate ligands are needed. New neutral fac-Re(CO)3L complexes were obtained by treating fac-[Re(CO)3(H2O)3]+ with unsymmetrical tridentate NNN donor ligands (LH) based primarily on a diethylenetriamine (dien) moiety with an aromatic group linked to a terminal nitrogen through a sulfonamide. LHs contain 2,4,6-trimethylbenzenesulfonyl (tmbSO2) and 5-(dimethylamino)naphthalene-1-sulfonyl (DNS) groups. X-ray crystallographic and NMR analyses confirm that in both the solid and the solution states all L- in fac-Re(CO)3L complexes are bound in a tridentate fashion with one donor being nitrogen from a deprotonated sulfonamido group. Another fundamental property that is important in radiopharmaceuticals is shape, which in turn depends on ring pucker. For L- = tmbSO2-dien-, tmbSO2-N'-Medien-, and tmbSO2-N,N-Me2dien-, the two chelate rings have a different pucker chirality, as is commonly found for a broad range of metal complexes. However, for fac-Re(CO)3(DNS-dien), both chelate rings have the same pucker chirality because the sulfonamido ring has an unusual pucker for the absolute configuration at Re; a finding that is attributable to intramolecular and intermolecular hydrogen bonds from the sulfonamido oxygens to the NH2 groups. Averaging of tmb NMR signals, even at -90 degrees C for Re(CO)3(tmbSO2-N,N-Me2dien), indicates rapid dynamic motion in the complexes with this group. However, examination of the structures suggests that free rotation about the S-C(tmb) bond is not possible but that concerted coupled rotations about the N-S and the S-C bonds can explain the NMR data.  相似文献   

18.
19.
Four mononuclear Cu(I) complexes of 2-(2'-pyridyl)benzimidazolylbenzene (pbb) with four different ancillary phosphine ligands PPh(3), bis[2-(diphenylphosphino)phenyl]ether (DPEphos), bis(diphenylphosphino)ethane (dppe), and bis(diphenylphosphinomethyl)diphenylborate (DPPMB) have been synthesized. The crystal structures of [Cu(pbb)(PPh(3))(2)][BF(4)] (1), [Cu(pbb)(dppe)][BF(4)] (2), [Cu(pbb)(DPEphos)][BF(4)] (3), and the neutral complex [Cu(pbb)(DPPMB)] (4) were determined by single-crystal X-ray diffraction analyses. The impact of the phosphine ligands on the structures of the copper(I) complexes was examined, revealing that the most significant impact of the phosphine ligands is on the P-Cu-P bond angle. The electronic and photophysical properties of the new complexes were examined by using UV-vis, fluorescence, and phosphorescence spectroscopies and electrochemical analysis. All four complexes display a weak MLCT absorption band that varies considerably with the phosphine ligand. At ambient temperature, no emission was observed for any of the complexes in solution. However, when doped into PMMA polymer (20 wt %), at ambient temperature, all four complexes emit light with a color ranging from green to red-orange, depending on the phosphine ligand. The emission of the new copper complexes has an exceptionally long decay lifetime (>200 micros). Ab initio MO calculations established that the lowest electronic transition in the copper(I) complexes is MLCT in nature. The electronic and photophysical properties of the new mononuclear Cu(I) complexes were compared with those of the corresponding polynuclear Cu(I) complexes based on the 2-(2'-dipyridyl)benzimidazolyl derivative ligands and the previously extensively studied phenanthroline-based Cu(I) complexes.  相似文献   

20.
Two tridentate Schiff base ligands were synthesized by condensation of equimolar amounts of benzoylacetone and 2-amino-1-ethanol or 3-amino-1-propanol, H2L1 and H2L2, respectively. The reaction of the Schiff base ligands with Cu(CH3COO)2 in methanol leads to (CuL1)4, 1 and (CuL2)2, 2. In the tetranuclear cubane species, the tridentate H2L has both a chelating and a bridging mode, after double deprotonation of the enolic OH groups. The copper(II) centers are five-coordinate with a NO4 donor set from the ligands. The coordination geometry around each copper ion is essentially square pyramidal with one nitrogen and two oxygens from one ligand and two oxygens of adjacent ligands from the next unit of the cubane. In dinuclear 2, H2L2 has chelating and bridging modes after double deprotonation of the enolic OH groups. The dianionic form of the Schiff base coordinates forming a six-membered chelate ring with Cu(II). Two such monomeric CuL2 entities are eventually linked through the alkoxo bridges to produce dinuclear 2. The absorption spectra strongly suggest that 2 interacts with CT-DNA. Both 1 and 2 appear to be more efficient than the parent compound in DNA cleavage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号