首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The atomic level chemical and microstructural features of grain boundaries in gadolinium-doped ceria (GDC) electrolyte thin film supported by Ni-GDC cermet anode were characterized by high resolution transmission electron microscope (HR-TEM) and scanning TEM (STEM). It was found that metallic Ni can diffuse from the anode into the thin film electrolyte along grain boundaries. In addition, Ce and Gd can also diffuse and segregate at grain boundaries between Ni grains in the anode substrate. HR-TEM observations revealed that Ni diffusion and segregation at grain boundaries between GDC grains enhanced the inhomogeneity and led to microstructural changes at grain boundary regions, i.e. the formation of superstructure. The observations also indicated that enhanced inhomogeneity at grain boundaries might play a significant role in the conductivity of GDC electrolyte film in solid oxide fuel cells.  相似文献   

2.
This paper discusses the possibility of using STM and AFM to image the dopant material in a segregated state. Samples of tin-doped indium oxide were prepared using a zone-confining process. The resultant material has dopant species segregated over certain grain boundaries at desired positions while the others remain dopant free. Samples were then imaged using STM, AFM and STEM. Enhanced contrast from the dopant rich grain boundaries and a larger grain size are observed at the surface making an interface with the substrate as compared to the free surface of the sample, while secondary electron STEM images show these grains to be smaller in size and the boundaries to be almost physically flat. This is interpreted to be a consequence of the zone-confining effect.  相似文献   

3.
The solid state diffusion-controlled growth of the phases is studied for the Au–Sn system in the range of room temperature to 200 °C using bulk and electroplated diffusion couples. The number of product phases in the interdiffusion zone decreases with the decrease in annealing temperature. These phases grow with significantly high rates even at the room temperature. The growth rate of the AuSn4 phase is observed to be higher in the case of electroplated diffusion couple because of the relatively small grains and hence high contribution of the grain boundary diffusion when compared to the bulk diffusion couple. The diffraction pattern analysis indicates the same equilibrium crystal structure of the phases in these two types of diffusion couples. The analysis in the AuSn4 phase relating the estimated tracer diffusion coefficients with grain size, crystal structure, the homologous temperature of experiments and the concept of the sublattice diffusion mechanism in the intermetallic compounds indicate that Au diffuses mainly via the grain boundaries, whereas Sn diffuses via both the grain boundaries and the lattice.  相似文献   

4.
A model describing the incorporation of thermal dopants into single crystal films grown by molecular beam epitaxy (MBE) is presented. The model is general, accounts for dopant surface segregation during deposition, and allows dopant incorporation probabilities and depth profiles to be calculated as a function of film growth conditions (e.g. deposition rate, dopant beam flux, and growth temperature Ts). Input data to the model include thermodynamic parameters such as the free energy of segregation and dopant-surface binding energies together with kinetic parameters such as incident fluxes and dopant diffusivities. The model is applied here to Si MBE in which common dopants are typically characterized by strong surface segregation and temperature-dependent incorporation probabilities σ. Calculated values of σ(Ts) and calculated depth profiles were found to agree very well with available experimental data for both group-III acceptors and group-V donors in Si. In addition, the model predicts, in agreement with limited experimental data, that a growth parameter range exists in which abrupt doping profiles can be obtained, even for dopants which exhibit strong surface segregation. Finally, transition temperatures from equilibrium to kinetically-limited segregation are determined for several dopants.  相似文献   

5.
This study focuses on calculation of the effective diffusion coefficient of a polycrystalline material accounting for the grain size and shapes. Polycrystal is modelled as a composite consisting of a matrix with high diffusivity (grain boundaries and triple junctions) and inhomogeneities with low diffusivity (bulk grains including crystal defects like dislocations). The segregation at the grain boundaries is accounted for. Typical micromechanical models are re-written for diffusivity assuming that the grains have the shape of ellipsoids of revolution (spheroids). The results are compared with (1) numerical results for hydrogen diffusion in an imaginary polycrystalline material and (2) experimental results for diffusion of hydrogen in nickel polycrystal available in the literature. The approach can be used for extraction of information on diffusivity along the grain boundaries.  相似文献   

6.
Micro-pulling down (μ-PD) method allows to prepare single crystals quickly and relatively inexpensively. Since it is a melt growth and taking into account segregation phenomena, the μ-PD method allows also to obtain single crystals characterized by dopant concentration gradients. Especially, taking the advantage of the grown crystal high aspect ratio, it allows to prepare crystalline samples with variable and wide range concentrations of dopants. These samples can help in understanding the correlation between dopant concentration and luminescence properties.  相似文献   

7.
The chemical reaction between SiO2 and tetragonal zirconia polycrystal (TZP) was directly observed using a TEM in-situ heating technique in order to understand the behavior of SiO2 in TZP at high temperatures. Their dynamic interaction was recorded up to about 1400°C using a CCD camera-video system connected to the TEM. Most of SiO2 phase dissolved into the ZrO2 grains above 1300°C. On the other hand, during cooling from the high temperature to around 400°C, amorphous SiO2 reprecipitated from the surface of ZrO2 grains and formed a thin layer around the ZrO2 grains. This result agrees well with the fact that silicon segregates in the vicinity of grain boundaries in SiO2-doped TZP. In order to confirm the grain boundary segregation at high temperatures, we investigated grain boundaries in quenched specimens by high resolution electron microscopy (HREM), energy dispersive X-ray spectroscopy (EDS) and electron energy-loss spectroscopy (EELS). It was found that no amorphous phase was present between two adjacent grains in the quenched samples. EDS analysis revealed that silicon segregated at the grain boundaries and that the segregation layer was wider than that in as-sintered specimens. The electron energy loss near edge structure (ELNES) of O K-edge was measured from both grain boundary and grain interior in quenched specimen, and their spectra were interpreted by a first principles molecular-orbital (MO) calculation using the discrete-variational (DV)-X method.  相似文献   

8.
Sulfur doping of silicon beyond the solubility limit by femtosecond laser irradiation leads to near-unity broadband absorption of visible and infrared light and the realization of silicon-based infrared photodetectors. The nature of the infrared absorption is not yet well understood. Here we present a study on the reduction of infrared absorptance after various anneals of different temperatures and durations for three chalcogens (sulfur, selenium, and tellurium) dissolved into silicon by femtosecond laser irradiation. For sulfur doping, we irradiate silicon in SF6 gas; for selenium and tellurium, we evaporate a film onto the silicon and irradiate in N2 gas; lastly, as a control, we irradiated untreated silicon in N2 gas. Our analysis shows that the deactivation of infrared absorption after thermal annealing is likely caused by dopant diffusion. We observe that a characteristic diffusion length—common to all three dopants—leads to the reduction of infrared absorption. Using diffusion theory, we suggest a model in which grain size of the resolidified surface layer can account for this characteristic diffusion length, indicating that deactivation of infrared absorptance may be caused by precipitation of the dopant at the grain boundaries.  相似文献   

9.
We synthesize hexagonal shaped single-crystal graphene, with edges parallel to the zig-zag orientations, by ambient pressure CVD on polycrystalline Cu foils. We measure the electronic properties of such grains as well as of individual graphene grain boundaries, formed when two grains merged during the growth. The grain boundaries are visualized using Raman mapping of the D band intensity, and we show that individual boundaries between coalesced grains impede electrical transport in graphene and induce prominent weak localization, indicative of intervalley scattering in graphene.  相似文献   

10.
The diffusion in alloys with tendency to impurity segregation at phase interfaces has been simulated by the Monte Carlo method. It has been shown that at the segregation energy higher than the critical value, dispersity of the system increases due to the suppression of coagulation of phase particles. The effect mathematically represents the violation of the Lifshitz-Slyozov kinetics of an infinite growth of phase particles, which is similar to the anomalous kinetics of grain growth in systems with an impurity. The existence of the equilibrium grain size due to the equilibrium grain size caused by the impurity segregation at grain boundaries was previously predicted by Weissmuller and is now confirmed experimentally. Thus, this study generalizes the Weissmuller effect to the thermodynamics of the decomposition in alloys.  相似文献   

11.
简要地介绍了单晶Si中注入掺杂原子在热激活退火中发生的瞬间增强扩散现象 ,综述了该现象发生的可能的微观机制和目前提出的几种抑制方法 ,展望了高能重离子在该领域的应用前景.The transient enhanced diffusion in crystalline silicon implanted with dopants and followed by high temperature annealing to activate the dopants is introduced. The physical mechanisms of transient enhanced dopant diffusion are then reviewed together with a short introduction to the proposed suppressing methods. Finally, the perspectives with using high energy heavy ions in this field are briefly discussed.  相似文献   

12.
A new Fe-Ni-Co-Nb-Ti-Si superalloy containing trace additions of selective rare earths and having good combination of very low thermal expansion coefficient, high-resistance to stress accelerated grain boundary oxygen embrittlement and fairly good notch-bar rupture strength has been successfully developed. The resistance to oxidation for long time exposure at high-temperatures and the stress rupture life has been improved significantly with trace yttrium addition. The microstructures of the alloys have been studied by means of analytical electron microscopy, chemical and X-ray analysis techniques. The results reveal that the trace yttrium segregates in the strengthening phase with platelet morphology, and helps in transforming A(3)B type epsilon phase into A(5)B type H. The morphology and crystal structures of the grain boundary phases also change with selective additions of rare earth elements. Compared with those in the conventional alloy, the platelet precipitates in the yttrium-containing alloy densely segregate within the grains and along the grain boundaries with smaller size. The segregation of the platelet precipitates within the grains is helpful in improving the strength of the alloy. In addition, its precipitation along the grain boundaries can improve the resistance to stress accelerated grain boundary oxidation and stress rupture property of the alloy and thereby contribute to its temperature stability.  相似文献   

13.
In this work, we present extended structural properties of poly-Si thin films fabricated by aluminium-induced crystallization (AIC) of amorphous silicon (a-Si) on high-temperature glass-ceramic substrates. The silicon nucleation kinetics on glass-ceramic substrates was investigated by optical microscopy. The crystalline quality of the films was studied by micro-Raman spectroscopy as a function of exchange annealing conditions. By means of electron backscattering diffraction (EBSD), we have analyzed the effect of thermal annealing on silicon grain size and its distribution, intra- and inter-grains defects, and on the grains preferential crystallographic orientation. The optimal thermal annealing condition, allowing 100% crystallized polysilicon large grains with an average grain size of 26 μm and 〈100〉 oriented, acquired a thermal budget of 475°C and 8 h.  相似文献   

14.
A two-dimensional square grain model has been applied to model oxygen exchange processes between a gas phase and a ceramic composite consisting of two randomly distributed phases of equal grain size (side length of squares). Both average diffusion profiles for thin films and the time dependence of the total amount of exchanged oxygen (relaxation curves) have been calculated numerically by means of the finite element method. The boundary conditions refer to an instantaneous change of the oxygen partial pressure in the surrounding gas phase, which gives rise to surface exchange reactions as well as to diffusion in the composite. Both local equilibrium at the interface between different phases (host phase and inclusions) and blocking heterophase boundaries have been taken into account. The numerical results are compared with the analytical solution for diffusion in a homogeneous medium introducing effective diffusion and surface exchange coefficients. When the relaxation time for effective medium diffusion is considerably shorter than that for the transport process from the host phase into the inclusions, relaxation curves with two separate time constants are predicted. Based on analytical approximations, relaxation times for various limiting cases are given.  相似文献   

15.
Molecular-dynamics (MD) simulations are used, for the first time, to study grain-boundary diffusion creep of a model polycrystalline silicon microstructure. Our fully dense model microstructures, with a grain size of up to 7.5 nm, were grown by MD simulations of a melt into which small, randomly oriented crystalline seeds were inserted. In order to prevent grain growth and thus to enable steady-state diffusion creep to be observed on a time scale accessible to MD simulations (of typically 10-9s), our input microstructures were tailored to (i) have a uniform grain shape and a uniform grain size of nm dimensions and (ii) contain only high-energy grain boundaries which are known to exhibit rather fast, liquid-like self-diffusion. Our simulations reveal that under relatively high tensile stresses these microstructures, indeed, exhibit steady-state diffusion creep that is homogenous (i.e., involving no grain sliding), with a strain rate that agrees quantitatively with that given by the Coble-creep formula.  相似文献   

16.
Wen Feng  Yinbiao Yan 《哲学杂志》2013,93(13):1057-1070
Abstract

In order to study the dependence of the grain boundary character distributions (GBCD) on the grain size, annealing treatment was carried out on 304 austenitic stainless steel with different initial grain sizes. The evolution of the GBCD was analysed by electron backscatter diffraction. The experimental results showed that abnormal grain growth (AGG) occurred when grain size was small. With a smaller initial grain size, the number density of abnormally large grains and the fraction of low-Σ CSL boundaries increased but the size of abnormally large grains decreased and the random boundaries presented a continuous network. With a larger initial grain size, the fraction of low-Σ CSL boundaries also increased as well as the size of abnormally large grains but the number density of abnormally large grains decreased and the connectivity of random boundary network was disrupted by low-Σ CSL boundaries, especially Σ3n (n = 1, 2, 3) boundaries. However, with a very large initial grain size, normal grain growth (NGG) occurred, which had no effect on the fraction of low-Σ CSL boundaries and the connectivity of random boundary network.  相似文献   

17.
A new model for phosphorus segregation at the Si-SiO2 interface is derived and verified by experimental data. The model considers for the first time, a third phase, the interface layer itself, in addition to the Si and SiO2 phases, and the dynamics of the three-phase system is described in terms of rate equations. In particular, the phosphorus compound formation in the interface layer (phosphorus pile-up), which renders the dopant electrically inactive to a large extent, is described as a competition of the dopant in silicon and in silicon dioxide in filling and depleting a constant density of interface traps. Our model allows an unambiguous correlation of the dopant concentration on both sides of the interface with the integral dose of the interface phosphorus pile-up. Experimental data for different phosphorus concentrations, different temperatures, and different oxidation ambients, including inert anneals, are fitted by a single curve.  相似文献   

18.
The content of each constituent element in the newly developed high-entropy alloys (HEAs) is always restricted in equimolar or near-equimolar ratio in order to avoid the formation of complex brittle phases during the solidification process. In this study, a 6FeNiCoSiCrAlTi high-entropy alloy coating with simple BCC solid solution phase has been prepared by laser cladding on a low carbon steel substrate. The microstructure, hardness and magnetic properties have been investigated. The experimental results show that the tendency of component segregation in the conventional solidification microstructure of multi-component alloy is effectively relieved. The microstructure of the coating is mainly composed of equiaxed polygonal grains, discontinuous interdendritic segregation and nano-precipitates. EBSD observation confirms that the polygonal grains and interdendritic segregation have similar BCC structure with lots of low angle grain boundaries at the interface. The microhardness of the coating reaches 780 HV0.5, which is much higher than most of the HEAs prepared by other methods. In addition, the coating shows excellent soft magnetic properties.  相似文献   

19.
The segregation of a vacancy and phosphorus on inclined grain boundaries in crystalline silicon has been calculated. It has been found that the distribution of defects at boundaries under study depends both on the nature of a defect and on the local structure of the boundary. The parameters characterizing the local deformation of the tetrahedral environment of an atom at the boundary have been proposed. A linear correlation has been found between the energy of the distribution and proposed parameters.  相似文献   

20.
The effects of preheating laser power and pulse laser energy on the size and crystallinity of laterally grown grains by dual-laser crystallization of amorphous silicon (a-Si) films on borosilicate glass substrates were investigated. Plasma-enhanced chemical vapor deposition was adopted for the deposition of the a-Si films in order to reduce the process temperature and thus the diffusion of metal impurities from the glass substrate to the deposited a-Si films. It was found that the preheating laser power is critical in enhancing grain size, whereas the pulse laser energy is closely related to crystal quality. It is demonstrated that by properly adjusting the process conditions, laterally grown grains of 50-μm size could be obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号