首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nowadays, the existing walking wheels still have problems with the wheel-legs structure and the traction trafficability on the loose sand. It is commonly believed that African ostrich (Struthio camelus) is a kind of bipedal species with superior running performance on the sandy environment. Being enlightened by this, four bionic walking wheels (herringbone wheel, in-line wheel, V-shaped wheel and combination wheel) were designed and tested by imitating the structure and posture of ostrich’s feet travelling on sand. The results showed that when the wheel load was 20, 30 and 50N respectively and the slip ratio was less than 35%, the herringbone wheel had better traction trafficability than that of other wheels. When the wheel load was 30, 50 and 70N and the slip ratio was more than 35%, the in-line wheel had better performance than that of other wheels. It was shown in this thesis that the bionic walking wheels designed with the multi-posture wheel-legs and the simple structure could reduce the soil resistance and the disturbance to sand, thereby achieving a superior performance of traveling on sand. In addition, a new idea and research method for designing of walking mechanism on soft terrain has been provided in this thesis.  相似文献   

2.
A dimensional analysis was carried out to study the effect of individual wheel parameters, namely the lug angle, lug height, rim width and lug spacing on the traction performance of rigid wheels in saturated soils. The performance of the test wheels was evaluated on the basis of drawbar pull, slip and torque data obtained at different normal loads ranging between 50 and 100 kg (790–980 N). The data were utilized to compute the performance values such as tractive efficiency and overall performance index. Through the regression analysis, the optimum values of lug angle, rim width and lug spacing were found to be 20°, 200 mm and 110 mm respectively for a wheel of 685 mm dia. However, a definite conclusion regarding the optimum value of lug height could not be drawn, though the analysis for higher loads indicated this value as of 38 mm. The wheel parameter most influencing the traction performance of the wheel was found to be the rim width.  相似文献   

3.
Most of the current lunar rover vehicle wheels are inconvenient for changing broken wheels and have poor shock absorbing in driving, so they cannot be used to carry people on the moon. To meet the demands for manned lunar transportation, a new wheel possessing a woven metal wire mesh tire and using hub-rim combination slide mechanism is designed in this article. The characteristics of the new wheel is analyzed by comparing with the same-size conventional rover wheels after demonstrating the validity of FEM simulation. The new wheel possesses lighter structure and superior shock absorbing. It also provides stronger traction because the deformation of the designed wheel increases the contact area between the tire and lunar terrain. In order to establish an on-line soil parameter estimation algorithm for low cohesion soil, the stress distribution along a driven deformable wheel on off-road terrain is simplified. The basic mechanics equations of the interaction between the wheel and the lunar soil can be used for analytical analysis. Simulation results show that the soil estimation algorithm can accurately and efficiently identify key soil parameters for loose sand.  相似文献   

4.
The travelling performance of rigid wheels on sand stratum is measured using two kinds of surface material, i.e. steel and steel coated with rubber. A new method for measuring the displacement of soil beneath the wheel has been developed using small polyester film markers. The trajectories of soil particles beneath the wheels are approximated by an exponential function and the fluctuations in the drawbar pull are represented by a sinusoidal function. The amplitude and basic wavelength of the fluctuation in the drawbar pull are discussed for both types of wheels.  相似文献   

5.
A series of experimental results is presented for towed, rigid wheels on sand. These results describe the dependence of wheel skid on wheel geometry and sinkage. They are compared with an existing theoretical prediction of wheel skid, with which the correlation is found to be poor. A physical interpretation of the skid phenomenon is given which provides a qualitative explanation of the trends evident in the results.  相似文献   

6.
A series of experimental results is presented for towed, rigid wheels on sand. These results describe the dependence of wheel skid on wheel geometry and sinkage. They are compared with an existing theoretical prediction of wheel skid, with which the correlation is found to be poor. A physical interpretation of the skid phenomenon is given which provides a qualitative explanation of the trends evident in the results.  相似文献   

7.
A movable lug wheel using a rollers-sliding groove mechanism was designed, constructed and tested. Two types of lug moving patterns of the movable lug wheel were proposed and evaluated. Tests were conducted in a soil bin test apparatus to determine the traction performance of the wheel as affected by lug moving pattern, lug spacing, horizontal load and vertical load. Similar tests were also conducted using a fixed lug wheel. Generally, under the same level of vertical load, the fixed lug wheel sank more than the movable lug wheels did. However in general, under various horizontal loads, there was no significant difference of slip between the movable lug wheel and the fixed lug wheel. Among the test lug wheels, the movable lug wheel with lug moving pattern-2 required the smallest driving torque and developed the highest traction efficiency.  相似文献   

8.
The effect of width on the rolling resistance of rigid wheels in sand is shown to be very strong, coefficient of rolling resistance increasing rapidly with width at each of the sinkage levels used in the experiments. Wheel skid also increased rapidly as wheel width increased. Prediction of measured results on the narrow wheels using the modified Bekker analysis was quite good although this is shown to be partly fortuitous. Poor correlation was found between measured values of coefficient of rolling resistance and the Freitag sand number. Very good prediction of measured values of coefficient of rolling resistance was found using an expression comprising the square root of the sinkage/dia ratio multiplied by a factor correcting for width/dia ratio. The square root of the sinkage/dia ratio is shown to be the value of coefficient of rolling resistance of a narrow wheel at shallow sinkage predicted from the modified Bekker analysis. It is also shown to be identical to the inverse of the Freitag clay number, with soil cone index value replaced by mean soil radial stress.  相似文献   

9.
This paper presents the effects of different wheel grouser shapes on the traction performance of a grouser wheel traveling on sandy terrain. Grouser wheels are locomotion gears that allow small and lightweight exploration rovers to traverse on the loose sand on extraterrestrial surfaces. Although various grouser shapes have been analyzed by some research groups, a more synthetic and direct comparison of possible grousers is required for practical applications. In this study, we developed a single wheel testbed and experimentally investigated the effects of four grouser shapes (parallel, slanted, V-shaped, and offset V-shaped) on the traction performance of linear movement on flat sand. The wheel slip, sinkage, traction and side force acting on the wheel axle, the wheel driving torque, and the efficiency of each wheel were examined. Thereafter, the effects on the lateral slope traversability of a small and lightweight four-wheeled rover with different grouser shapes were also examined. The traversability experiment demonstrated the vehicle mobility performance in order to contribute to the design optimization of rover systems. These experimental results and their comparisons suggested that, of the shapes studies herein, the slanted shape was the optimal grouser design for use in wheeled rovers on lunar and planetary soil.  相似文献   

10.
In recent years, attempts have been made to deploy robots for use in various activities such as planetary exploration, post-tsunami seashore reconnaissance, and volcano investigations. These robots may have to move on soft terrain. The movement of sand or soil particles under the wheels or tracks greatly affects the robot’s ability to maneuver. There is a simple but difficult problem with measuring particle movement: the sand and soil particles beneath the surface are not visible. Only 2D visualization techniques that take a surface picture of the ground or use transparent boards are available. A nuclear 3D imaging technique called positron emission particle tracking (PEPT) was developed at the University of Birmingham for this purpose. PEPT detects pairs of gamma rays emitted by a positron-emitting radionuclide of a tracer particle, which produces an image of the tracer. Thus, the overarching goal of this study was to explore the 3D terramechanics between terrain particles and a wheel or track using PEPT. As an initial step, this paper introduces an imaging technique for standard sand under a rotating wheel using PEPT and presents some images of sand particles under various conditions. Absolute displacements along the longitudinal, vertical, and lateral axes are presented.  相似文献   

11.
车轮材料特性对轮轨磨损与疲劳性能影响的研究   总被引:3,自引:1,他引:2  
在MMS-2A滚动摩擦磨损试验机上进行不同材料车轮与U75V热轧钢轨的匹配试验,研究材料特性对轮轨试样磨损与疲劳性能的影响.结果表明:随着车轮碳含量增加,组织中珠光体比例增加,珠光体中渗碳体片层间距减小,硬度增大;随着轮/轨硬度比增大,车轮表层的塑性变形层厚度逐渐减小,对摩副钢轨塑性变形层厚度呈现先增大后减小的趋势;车轮试样磨损形式由小剥离掉块向大剥离掉块转变,钢轨磨损机制由材料表层的轻微剥落向深层剥落磨损转变;提升车轮的硬度,轮轨表面的疲劳裂纹长度减小;且随着车轮硬度的增大,钢轨表面萌生的疲劳裂纹的末端扩展角度有增大的趋势,使钢轨的疲劳裂纹更容易向材料心部扩展.  相似文献   

12.
Wheeled mobile robots are often used on high risk rough terrain. Sandy terrains are widely distributed and tough to traverse. To successfully deploy a robot in sandy environment, wheel-terrain interaction mechanics in skid should be considered. The normal and shear stress is the basis of wheel-soil interaction modeling, but the normal stress in the rear region on the contact surface is computed through symmetry in classical terramechanics equations. To calculate that directly, a new reference of wheel sinkage is proposed. Based on the new reference, both the wheel sinakge and the normal stress can be given using a quadratic equation as the function of wheel-soil contact angle. Moreover, the normal stress can be expressed as a linear function of the wheel sinkage by introducing a constant coefficient named as sand stiffness in this paper. The linearity is demonstrated by the experimental data obtained using two wheels and on two types of sands. The sand stiffness can be estimated with high accuracy and it decreases with the increase of skid ratio due to the skid-sinkage phenomenon, but increases with the increase of vertical load. Furthermore, the sand stiffness can be utilized directly to compare the stiffness of various sandy terrains.  相似文献   

13.
A work optimization strategy is combined with algorithms within the vehicle-terrain interface (VTI) model to maximize the traction of a four-wheel vehicle operating on loose dry sand. The optimization model distributes traction among the steered and non-steered wheels with the work optimum coefficient (WOC) of each wheel treated as an independent design objective. Drawbar pull (DBP), motion resistance (MR), longitudinal traction coefficient (LTC), lateral force coefficient (LFC), tire deflection, and wheel slip are key parameters that appear in the VTI model for traction performance analysis. The analysis includes wheels of different diameters, widths, heights, and inflation pressures, under variable wheel slips. A multi-objective optimization problem is formulated over a thirteen-dimensional search space bounded by eight design constraints. The generalized reduced gradient method is used to predict optimal values of the design variables as well as ground and traction parameters such as DBP, MR, LTC, and LFC for maximum slope climbing efficiency. The WOCs are maximized for lateral slip angles between 0° and 24° to find a set of Pareto optimal solutions over a wide range of weight factors. A method to apply the optimization results for predicting vehicle performance and traction control on dry sand is presented and discussed.  相似文献   

14.
A movable lug wheel was tested in a soil bin test apparatus to determine its traction performance and to measure the soil reaction forces on its lugs. Similar tests were also conducted using a fixed lug wheel. The effects of the lug motion pattern, lug spacing and horizontal load on pull and lift forces were studied. From the experiments it is confirmed that the movable action of the lug plate could generate superior pull and lift forces in comparison with the fixed lug wheel. Among the test wheels, lug motion pattern-2 generated the highest pull and lift forces. Within the range of the test conditions, there was no significant difference in pull and lift forces of the lug plate between the test lug wheels with 12 lugs and 15 lugs at the same level of horizontal and vertical loads. The increase of horizontal load up to 200 N generally increased the pull force and generated smaller rolling resistance before the lug left the soil, but did not increase the lift force significantly. The patterns of pull force, lift force and drawbar pull generated under a constant slip were slightly different from those under a constant horizontal load. Finally, the results were also elucidated by their actual lug trajectories in soil.  相似文献   

15.
On the Moon or Mars, typical target environments for exploration rovers are covered with fine sand, so their wheels easily slip on such weak ground. When wheel slippage occurs, it is hard for the rover to follow its desired route. In the worst case, the rover gets stuck in loose soil and cannot move anymore. To reduce the risk of the rover getting stuck, analysis of the contact mechanics between the soil and wheel is important. Various normal stress distribution models for under the wheel surface have been proposed so far. However, classical models assume a uniform stress distribution in the wheel’s width direction. In this study, we measured the two-dimensional normal stress distribution of a wheel in experiments. The results clarified that the stress distribution in the wheel’s width direction is a mountain-shape curve with a peak located at the center of the wheel. Based on the results, we constructed a stress distribution model for the wheel’s width direction. In this paper, we report our measurements for the two-dimensional stress distribution of a wheel on loose soil and introduce our stress distribution model for the wheel’s width direction based on our experimental results.  相似文献   

16.
A substantial number of laboratory and field tests have been conducted to assess performance of various wheel designs in loose soils. However, there is no consolidated database which includes data from several sources. In this study, a consolidated database was created on tests conducted with wheeled vehicles operating in loose dry sand to evaluate existing soil mobility algorithms. The database included wheels of different diameters, widths, heights, and inflation pressures, operating under varying loading conditions. Nine technical reports were identified containing 5253 records, based on existing archives of laboratory and field tests of wheels operating in loose soils. The database structure was assembled to include traction performance parameters such as drawbar pull, torque, traction, motion resistance, sinkage, and wheel slip. Once developed, the database was used to evaluate and support validation of closed form solutions for these variables in the Vehicle Terrain Interface (VTI) model. The correlation between predicted and measured traction performance parameters was evaluated. Comparison of the predicted versus measured performance parameters suggests that the closed form solutions within the VTI model are functional but can be further improved to provide more accurate predictions for off-road vehicle performance.  相似文献   

17.
We have been developing a simulation program for use with soil–wheel interaction problems by coupling Finite Element Method (FEM) and Discrete Element Method (DEM) for which a wheel is modeled by FEM and soil is expressed by DEM. Previous two-dimensional FE–DEM was updated to analyze the tractive performance of a flexible elastic wheel by introducing a new algorithm learned from the PID-controller model. In an elastic wheel model, four structural parts were defined using FEM: the wheel rim, intermediate part, surface layer, and wheel lugs. The wheel rigidity was controlled by varying the Young’s Modulus of the intermediate part. The tractive performance of two elastic wheels with lugs for planetary rovers of the European Space Agency was analyzed. Numerical results were compared with experimentally obtained results collected at DLR Bremen, Germany. The FE–DEM result was confirmed to depict similar behaviors of tractive performance such as gross tractive effort, net traction, running resistance, and wheel sinkage, as in the results of experiments. Moreover, the tractive performance of elastic wheels on Mars was predicted using FE–DEM. Results clarified that no significant difference of net traction exists between the two wheels.  相似文献   

18.
Low mass compact rovers provide cost effective means to explore extra-terrestrial terrains. Use of flexible wheels in such applications where the wheel size is restricted, improves traction at reduced slip and sinkage. Design of a flexible wheel for a given mission is a challenging task requiring consideration of stiffness of rim and spokes, stress induced in the wheel, chassis movement during wheel rotation and the operating mode of the wheel. Also, accurate mathematical models are required to save design and development time and reduce the number of prototypes for selection. It is observed that most of the research papers deal with performance testing of flexible wheels and information on analytical formulation is scarce. Therefore, in the present work, a methodology has been formulated to systematically design a flexible wheel for a low mass lunar rover. The prototype performance is tested and compared with analytical estimates and reasons for difference are investigated. Paper contains details of design criteria, mathematical modelling, realisation of wheel prototype, test fixture and analysis test comparison. Authors believe that this work provides a useful aid to the designer to systematically design flexible wheels for low mass lunar rovers.  相似文献   

19.
ExoMars is the European Space Agency (ESA) mission to Mars planned for launch in 2018, focusing on exobiology with the primary objective of searching for any traces of extant or extinct carbon-based micro-organisms. The on-surface mission is performed by a near-autonomous mobile robotic vehicle (also referred to as the rover) with a mission design life of 180 sols. The rover has a 6 × 6 × 6 with 6 wheel-walking drive configuration (all 6 wheels are driven, steered and have a ‘walking’ capability) and has flexible wheels providing enhanced traction compared to rigid wheels of the same diameter. The suspension is a passive ‘3-bogie’ system which offers the same 6 wheel contact on uneven ground and mobility performance as the NASA-JPL ‘rocker-bogie’ suspension used on previous Mars rovers, but permits elimination of the differential linkage present in that design. Mars presents several challenges to the rover locomotion subsystem with its rock-strewn surface, sand dunes, rocky outcrops, craters and slopes. The unknown nature of the terrain to be traversed imposes several constraints on the locomotion subsystem design that need to be evaluated and incorporated within the flight model for its successful operation on Mars. In addition, accommodation within the confines of the lander and successful egress from it over deflated airbags places stringent constraints on locomotion subsystem mass, stowage envelope, deployment and wheel design. This paper documents the evolution of the ExoMars rover vehicle locomotion configuration from an early design concept to the current mission baseline design. The discussion involves various tradeoffs supported by mechanical and terramechanical analyses, simulations and testing performed on full-scale locomotion breadboard models at single wheel level and system level.  相似文献   

20.
A 8.95-kW walking tractor was evaluated for draft and drawbar power on tilled land. Empirical equations were developed to correlate the relationship between draft and wheel slip, drawbar power and wheel slip and drawbar power and fuel consumption. The values of draft, drawbar power and specific fuel consumption were calculated at 25% wheel slip. The results indicated that the values of draft on tilled land with pneumatic wheels at engine speed of 2000 rpm were 803 and 773 N in second low and third low gears, respectively. The respective draft values at engine speed of 1500 rpm were 748 and 735 N in second low and third low gears under slightly loose soil conditions. Mounting of a 40-kg wheel ballast increased the value of draft to 901 and 921 N at an engine speed of 2000 rpm and 872 and 888 N at an engine speed of 1500 rpm in second low and third low gears. Replacement of pneumatic wheels by steel wheels further increased the draft readings to 1034 and 999 N at an engine speed of 2000 rpm and 913 and 935 N at engine speed of 1500 rpm in second low and third low gears, respectively, indicating significant increase in drawbar power both at 2000 and 1500 rpm in second low and third low gears with the use of steel wheels. The specific fuel consumption decreased by about 28% and 27% at engine speed of 2000 rpm and about 17% and 21% at engine speed of 1500 rpm in second low and third low gear with the use of steel wheels over pneumatic wheels without wheel ballast. The specific fuel consumption decreased by about 4% and 14% at engine speed of 2000 rpm and 7% and 23% at engine speed of 1500 rpm in second low and third low gears, respectively, with the use of steel wheels over pneumatic wheels with 40 kg wheel ballast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号