首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
In this paper we propose, a collocation method for solving the Blasius equation. The Blasius equation is a third-order nonlinear ordinary differential equation. This approach is based on a rational scaled generalized Laguerre function collocation method. We also present the comparison of this work with some well-known results and show that the present solution is accurate.  相似文献   

2.
In this article, Laplace decomposition method (LDM) is applied to obtain series solutions of classical Blasius equation. The technique is based on the application of Laplace transform to nonlinear Blasius flow equation. The nonlinear term can easily be handled with the help of Adomian polynomials. The results of the present technique have closed agreement with series solutions obtained with the help of Adomian decomposition method (ADM), variational iterative method (VIM) and homotopy perturbation method (HPM).  相似文献   

3.
In this article, an analytic approximation to the solution of Blasius equation is obtained by using a new modification of homotopy perturbation method. The Blasius equation is a nonlinear ordinary differential equation which arises in the boundary layer flow. The comparison with Howart's numerical solution shows that the new homotopy perturbation method is an effective mathematical method with high accuracy. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010  相似文献   

4.
A similarity equation of the momentum boundary layer is analytically studied for a moving flat plate with mass transfer in a stationary fluid by a newly developed technique namely homotopy analysis method (HAM). The equation shows its significance for the practical problem of a shrinking sheet with a constant velocity, and only admits the existence of the solution with mass suction at the wall surface. The present work provides analytically new solution branch of the Blasius equation with a shrinking sheet in different solution areas, including both multiple solutions and unique solution with the aid of an introduced auxiliary function. The analytical results show that quite complicated behavior with three different solution areas controlled by two critical mass transfer parameters exists, which agrees well with the numerical techniques and greatly differs from the continuously stretching surface problem and the Blasius problem with a free stream. The new analytical solution branch of the Blasius equation with a shrinking sheet enriches the solution family of the Blasius equation, and helps to deeply understand the Blasius equation.  相似文献   

5.
Blasius problem is the simplest nonlinear boundary-layer problem. We hope that any approach developed for this epitome can be extended to more difficult hydrodynamics problems. With this motivation we review the so called Töpfer transformation, which allows us to find a non-iterative numerical solution of the Blasius problem by solving a related initial value problem and applying a scaling transformation. The applicability of a non-iterative transformation method to the Blasius problem is a consequence of its partial invariance with respect to a scaling group. Several problems in boundary-layer theory lack this kind of invariance and cannot be solved by non-iterative transformation methods. To overcome this drawback, we can modify the problem under study by introducing a numerical parameter, and require the invariance of the modified problem with respect to an extended scaling group involving this parameter. Then we apply initial value methods to the most recent developments involving variants and extensions of the Blasius problem.  相似文献   

6.
A very simple and efficient local variational iteration method (LVIM), or variational iteration method with local property, for solving problems of nonlinear science is proposed in this paper. The analytical iteration formula of this method is derived first using a general form of first order nonlinear differential equations, followed by straightforward discretization using Chebyshev polynomials and collocation method. The resulting numerical algorithm is very concise and easy to use, only involving highly sparse matrix operations of addition and multiplication, and no inversion of the Jacobian in nonlinear problems. Apart from the simple yet efficient iteration formula, another extraordinary feature of LVIM is that in each local domain, all the collocation nodes participate in the calculation simultaneously, thus each local domain can be regarded as one “node” in calculation through GPU acceleration and parallel processing. For illustration, the proposed algorithm of LVIM is applied to various nonlinear problems including Blasius equations in fluid mechanics, buckled bar equations in solid mechanics, the Chandrasekhar equation in astrophysics, the low-Earth-orbit equation in orbital mechanics, etc. Using the built-in highly optimized ode45 function of MATLAB as a comparison, it is found that the LVIM is not only very accurate, but also much faster by an order of magnitude than ode45 in all the numerical examples, especially when the nonlinear terms are very complicated and difficult to evaluate.  相似文献   

7.
A nonlinear loaded differential equation with a parameter on a finite interval is studied. The interval is partitioned by the load points, at which the values of the solution to the equation are set as additional parameters. A nonlinear boundary value problem for the considered equation is reduced to a nonlinear multipoint boundary value problem for the system of nonlinear ordinary differential equations with parameters. For fixed parameters, we obtain the Cauchy problems for ordinary differential equations on the subintervals. Substituting the values of the solutions to these problems into the boundary condition and continuity conditions at the partition points, we compose a system of nonlinear algebraic equations in parameters. A method of solving the boundary value problem with a parameter is proposed. The method is based on finding the solution to the system of nonlinear algebraic equations composed.  相似文献   

8.
In this paper, we first introduce a new homotopy perturbation method for solving a fractional order nonlinear cable equation. By applying proposed method the nonlinear equation it is changed to linear equation for per iteration of homotopy perturbation method. Then, we solve obtained problems with separation method. In examples, we illustrate that the exact solution is obtained in one iteration by convenience separating of source term in given equation.  相似文献   

9.
We consider the Crocco equation (the reduction of the Blasius equation). The use of this more simple equation for computation of the Blasius constant leads to some unexpected difficulties, which have been unexplained. We computed the asymptotic expansion of the solution to Crocco equation at its singularity. This expansion was unknown before. We describe the structure of the Riemann surface of the Crocco solution at the singularity. These results were used for construction of an effective numerical algorithm, which is based on analytical continuation, for computation of the Blasius constant with an arbitrary and guaranteed accuracy. We computed the Blasius constant with a 100 decimal places.  相似文献   

10.
提出了一种寻找变系数非线性方程精确解的新方法—相容方程法,利用该方法求出了变系数非线性KP方程的精确解,从而证明了这种方法是十分有效的.  相似文献   

11.
A modification of the homotopy analysis method (HAM) for solving nonlinear second-order boundary value problems (BVPs) is proposed. The implementation of the new approach is demonstrated by solving the Darcy–Brinkman–Forchheimer equation for steady fully developed fluid flow in a horizontal channel filled with a porous medium. The model equation is solved concurrently using the standard HAM approach and numerically using a shooting method based on the fourth order Runge–Kutta scheme. The results demonstrate that the new spectral homotopy analysis method is more efficient and converges faster than the standard homotopy analysis method.  相似文献   

12.
In this paper, we introduce a multigrid method for solving the nonliear Urysohn integral equation. The algorithm is derived from a discrete resolvent equation which approximates the continuous resolvent equation of the nonlinear Urysohn integral equation. The algorithm is mathematically equivalent to Atkinson’s adaptive twogrid iteration. But the two are different computationally. We show the convergence of the algorithm and its equivalence to Atkinson’s adaptive twogrid iteration. In our numerical example, we compare our algorithm to other multigrid methods for solving the nonliear Urysohn integral equation including the nonlinear multigrid method introduced by Hackbush.  相似文献   

13.
In this paper we develop the multilevel augmentation method for solving nonlinear operator equations of the second kind and apply it to solving the one-dimensional sine-Gordon equation. We first give a general setting of the multilevel augmentation method for solving the second kind nonlinear operator equations and prove that the multilevel augmentation method preserves the optimal convergence order of the projection method while reducing computational cost significantly. Then we describe the semi-discrete scheme and the fully-discrete scheme based on multiscale methods for solving the sine-Gordon equation, and apply the multilevel augmentation method to solving the discrete equation. A complete analysis for convergence order is proposed. Finally numerical experiments are presented to confirm the theoretical results and illustrate the efficiency of the method.  相似文献   

14.
In this paper, we apply He''s Variational iteration method (VIM) for solving nonlinear Newell-Whitehead-Segel equation. By using this method three different cases of Newell-Whitehead-Segel equation have been discussed. Comparison of the obtained result with exact solutions shows that the method used is an effective and highly promising method for solving different cases of nonlinear Newell-Whitehead-Segel equation.  相似文献   

15.
A mixed problem for a nonlinear integrodifferential equation arising in econometrics is considered. An analytical-numerical method is proposed for solving the problem. Some numerical results are presented.  相似文献   

16.
In this article, we have introduced a Taylor collocation method, which is based on collocation method for solving initial-boundary value problem describing the process of cooling of a semi-infinite body by radiation. This method is based on first taking the truncated Taylor expansions of the solution function in the fractional differential equation and then substituting their matrix forms into the equation. Using collocation points, we have the system of nonlinear algebraic equation. Then, we solve the system of nonlinear algebraic equation using Maple 13 and we have the coefficients of Taylor expansion. In addition, numerical results are presented to demonstrate the effectiveness of the proposed method.  相似文献   

17.
扁锥面网壳非线性动力分岔与混沌运动   总被引:2,自引:0,他引:2  
对曲面为正三角形网格的3向扁锥面单层网壳,用拟壳法建立了轴对称非线性动力学方程.在几何非线性范围内给出了协调方程.网壳在周边固定条件下,通过Galerkin作用得到一个含2次、3次的非线性微分方程,通过求Floquet指数讨论了分岔问题.为了研究混沌运动,对一类非线性动力系统的自由振动方程进行了求解,继之给出了单层扁锥面网壳非线性自由振动微分方程的准确解,通过求Melnikov函数,给出了发生混沌的临界条件,通过数值仿真也证实了混沌运动的存在.  相似文献   

18.
By introducing the fractional derivatives in the sense of Caputo, we use the adomian decomposition method to construct the approximate solutions for the cubic nonlinear fractional Schordinger equation with time and space fractional derivatives. The exact solution of the cubic nonlinear Schrodinger equation is given as a special case of our approximate solution. This method is efficient and powerful in solving wide classes of nonlinear evolution fractional order equation.  相似文献   

19.
The hybrid function approximation method for solving Hutchinson’s equation which is a nonlinear delay partial differential equation, is investigated. The properties of hybrid of block-pulse functions and Lagrange interpolating polynomials based on Legendre-Gauss-type points are presented and are utilized to replace the system of nonlinear delay differential equations resulting from the application of Legendre pseudospectral method, by a system of nonlinear algebraic equations. The validity and applicability of the proposed method are demonstrated through two illustrative examples on Hutchinson’s equation.  相似文献   

20.
Butler-Volmer方程是电化学系统中描述电极动力学过程的本构方程,具有强非线性.为了对这一方程(耦合两个Ohm方程)进行解析求解,在同伦分析方法的框架下,发展了满足简单条件的广义非线性算子的算法,以取代原同伦分析中的非线性算子.该广义非线性算子的构造保证了高阶形变方程的线性特征.这一方法的有效性通过一些算例得到了验证.最后通过同伦分析方法对Butler-Volmer方程进行了求解,结果显示过电位和电流密度的级数解析解与数值解吻合很好,并有很好的收敛效率.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号