首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
The electrical conductivity, magnetic susceptibility, magnetization, and submillimeter (v=5∓20 cm−1) permittivity and dynamic conductivity of La1−x Sr x MnO3 (0≤x≤ 0.45) single crystals are investigated. The anomalies in the temperature dependences of these quantities are identified with diverse magnetic and structural phase transformations, including antiferromagnetic and ferromagnetic ordering, structural transitions between strongly distorted (Jahn-Teller) and weakly distorted (pseudocubic) orthorhombic phases, structural transitions to a rhombohedral phase and unusual transitions to a polaron-ordering state. As a result, the complete T-x phase diagram of the system La1−2x Sr x MnO3 is constructed in a wide interval of temperatures T=4.2∓1050 K and concentrations x=0−0.45. Pis’ma Zh. éksp. Teor. Fiz. 68, No. 4, 331–336 (25 August 1998)  相似文献   

2.
This paper presents the results of a study of the thermal properties of monoclinic single-crystal RbDy(WO4)2 at temperatures of 2–15 K and in magnetic fields up to 6 T. From the results of measurements of the heat capacity and thermograms, two structural phase transitions are detected, at T c1=4.9 K and T c2=9.0 K. The transformation from the high-temperature phase to the low-temperature phase occurs via an intermediate phase. The field dependences of the critical temperatures are found for various magnetic-field orientations. H-T phase diagrams are constructed for Ha and Hc. An anomalous increase (by almost an order of magnitude) of the relaxation time of the system, associated with structural instability of the crystal lattice, is detected in the region of the structural phase transitions. A symmetry analysis is carried out, and possible crystal structures of the low-temperature phase are indicated. Fiz. Tverd. Tela (St. Petersburg) 40, 2221–2225 (December 1998)  相似文献   

3.
The investigation of the specific heat of a RbDy(WO4)2 single crystal at temperatures 0.2–2.5 K and in magnetic fields up to 2 T are reported. The temperature dependence of the specific heat near T N=0.818 K is compared with the predictions for different models. The 2D Ising model describes satisfactorily C(T) below T N, while for T>T N none of the theoretical models agree with the behavior of C(T) of RbDy(WO4)2. The H-T phase diagram for Hc is complicated and possesses a triple point, where regions of existence of three magnetic phases converge. The magnetic ordering is analyzed from the standpoint of the Jahn-Teller nature of the structural phase transitions occurring in RbDy(WO4)2 at higher temperatures. It is shown that the form of the phase diagram depends on the direction of the vector H, for the general case of an arbitrary direction of H, two phase transitions can occur with increasing field. Fiz. Tverd. Tela (St. Petersburg) 41, 491–496 (March 1999)  相似文献   

4.
The transition from a stable orthorhombic structure to a hexagonal structure has been revealed in Tb1−x Y x MnO3 multiferroics at x = 0.2–0.4. It has been shown that almost single-phase crystals with an orthorhombic or hexagonal structure can be obtained by choosing the growth conditions. It has been found that the magnetic and dielectric properties of orthorhombic single crystals with x = 0.2–0.3 are similar to the properties of pure TbMnO3 and are characterized by a strong anisotropy of the magnetic susceptibility at low temperatures and by the presence of a number of magnetic phase transitions, including those to the ferroelectric state. New spontaneous (T ≤ 15 K) and magnetic-field induced (H | C 6) phase transitions accompanied by the appearance of an uncompensated rare-earth magnetic moment ∼1 μB/mole have been observed in hexagonal single crystals with x = 0.3–0.5.  相似文献   

5.
We study the conductivity and magnetic susceptibility of single-crystal iron monosilicide in ultrahigh magnetic fields (up to 500 T) at low temperatures. The experimental methods used in measuring the conductivity and magnetic susceptibility are discussed. At 77K we detect a gradual increase in the conductivity of iron monosilicide by more than a factor of 100 as the magnetic field gets stronger. At 4.2K we detect a first-order phase transition in a field of 355 T accompanied by a sudden change in the value of the magnetic moment by 0.95 μ B per iron atom and a transition to a phase with high conductivity. The results are discussed within the scope of the spin-fluctuation theory. Zh. éksp. Teor. Fiz. 116, 1770–1780 (November 1999)  相似文献   

6.
The electrical conductivity and magnetoresistance effect of n and p types of CuInSe2 single crystals were studied within the temperature range of 4.2–300 K and within magnetic fields of up to 6 T. It was found that the hopping mechanism of conductivity dominates in the temperature range of 4.2–100 K. A peculiarity of electrical conductivity behavior, accompanied by a change in the magnetoresistance sign in the vicinity of T ≈ 60 K, was revealed.  相似文献   

7.
In the temperature interval 4.2–300K and magnetic fields up to 4 T, we have investigated the electrical, thermal-electrical, thermal-magnetic, and magnetic properties of single crystals of the solid solution Pb0.8Sn0.2Te. It is shown that an enhancement of its level of structural perfection leads to the appearance of a second structural phase transition (SPT), and also to an increase in the temperature of the first structural phase transition. Fiz. Tverd. Tela (St. Petersburg) 41, 1750–1752 (October 1999)  相似文献   

8.
The field (0–5.5 T) and temperature (2–300 K) dependences of the magnetization of LiTmF4 powders with particle sizes of 1 μm and 56–400 μm are investigated experimentally and theoretically. It is concluded that a transition layer exists between the thulium ions in the bulk and the ions at the surface. Two magnetic-field-induced structural phase transitions are observed at low temperatures, and the temperature dependence of the critical magnetic fields is established. Pis’ma Zh. éksp. Teor. Fiz. 66, No. 4, 247–250 (25 August 1997)  相似文献   

9.
Differential scanning calorimetry was used to study phase transitions (PT) in the perovskite BaCeO3. It is shown that its phase state is determined by a second-order λ transition at T tr=520–540 K and a first-order δ transition at T tr=600–670 K. Differences in PT parameters between ceramic and fused BaCeO3 have been established. Fiz. Tverd. Tela (St. Petersburg) 40, 2109–2112 (November 1998)  相似文献   

10.
The results of an experimental investigation of the temperature dependences of the magnetic susceptibility and resistivity in the shape-memory ferromagnetic alloys Ni2+x Mn1−x Ga (x=0–0.20) are reported. A T−x phase diagram is constructed on the basis of these data. It is shown that partial substitution of Ni for Mn causes the temperatures of the structural (martensitic) T M and magnetic T C (Curie point) phase transitions to converge. In the region where T C =T M the transition temperature increases linearly with magnetic field in the range from 0 to 10 kOe. The kinetics of a magnetic-field-induced martensitic phase transition is investigated, and the velocities of the martensite-austenite interphase boundary during direct and reverse transitions are measured. A theoretical model is proposed and the T−x phase diagram is calculated. It is shown that there exist concentration ranges where the magnetic and martensitic transitions merge into a first-order phase transition. The theoretical results are in qualitative agreement with experiment. Zh. éksp. Teor. Fiz. 115, 1740–1755 (May 1999)  相似文献   

11.
The temperature dependence of electrical conductivity σ (77–300 K) and magnetic susceptibility χ (2–300 K) of AgxTiSe2 in the Ag1/4TiSe2 phase has been studied in order to determine the possibility of preserving the charge-density-wave state in silver-intercalated TiSe2. The behavior of χ and σ in this phase is compared with that of the starting compound TiSe2. Fiz. Tverd. Tela (St. Petersburg) 40, 2165–2167 (December 1998)  相似文献   

12.
We have performed measurements of the magnetization and differential magnetic susceptibility of Dy0.62Y2.38Fe5O12 single crystals in pulsed magnetic fields up to 45 T at liquid-helium temperature for three orientations of the external field: H‖[100], H‖[110], and H‖[111]. It was found that the magnetization reversal in the rare-earth magnetic subsystem occurs via several phase transitions, whose number depends on the direction of the external field, as is characteristic for Ising magnets. The anomalies in the field dependences of the magnetization are interpreted on the assumption of quasi-Ising ordering of the rare-earth ions. Pis’ma Zh. éksp. Teor. Fiz. 67, No. 8, 552–556 (25 April 1998)  相似文献   

13.
A study is reported of the effect of low-level germanium additions (∼0.01–0.1 at. %) on the parameters of the superconducting transition, viz. the critical temperature T c, the second critical magnetic field H c2, and in PbTe doped with 2 at. % Tl, which are derived from the dependence of the electrical resistivity of a sample on temperature (0.4–4.2 K) and magnetic field (0–1.3 T). The discontinuity revealed by experimental data is related to the onset of a Ge-induced structural phase transition. Fiz. Tverd. Tela (St. Petersburg) 40, 1204–1205 (July 1998)  相似文献   

14.
The physical and structural properties of Fe1.11Te and Fe1.11Te0.5Se0.5 have been investigated by means of X-ray and neutron diffraction as well as physical property measurements. For the Fe1.11Te compound, the structure distortion from a tetragonal to monoclinic phase takes place at 64 K accompanied with the onset of antiferromagnetic order upon cooling. The magnetic structure of the monoclinic phase was confirmed to be of antiferromagnetic configuration with a propagation vector k = (1/2, 0, 1/2) based on Rietveld refinement of neutron powder diffraction data. The structural/magnetic transitions are also clearly visible in magnetic, electronic and thermodynamic measurements. For superconducting Fe1.11Te0.5Se0.5 compound, the superconducting transition with T c = 13.4 K is observed in the resistivity and ac susceptibility measurements. The upper critical field H c2 is obtained by measuring the resistivity under different magnetic fields. The Kim’s critical state model is adopted to analyze the temperature dependence of the ac susceptibility and the intergranular critical current density is calculated as a function of both field amplitude and temperature. Neutron diffraction results show that Fe1.11Te0.5Se0.5 crystalizes in tetragonal structure at 300 K as in the parent compound Fe1.11Te and no structural distortion is detected upon cooling to 2 K. However an anisotropic thermal expansion anomaly is observed around 100 K.  相似文献   

15.
In this paper the influence of mechanical stress on magnetoelastic properties, i.e., magnetostriction and thermal expansion in the neighborhood of a structural phase transition of the Jahn-Teller crystal TmVO4 is investigated experimentally and theoretically. It is shown that the magnetoelastic properties of TmVO4 for a magnetic field H∥[001] do not change the domain structure of the sample, which is rather well described when mechanical stresses in the crystal are taken into account using the parameter . Conversely, for magnetic fields along the direction of spontaneous strain [110] the magnetoelastic properties are primarily caused by reorientation of the Jahn-Teller domains and short-range order effects. It is shown that the “true” magnetostriction of a single-domain crystal for H∥[110] diverges at the phase transition point T c=2.15 K in the absence of mechanical stresses and is strongly decreased by these stresses. Fiz. Tverd. Tela (St. Petersburg) 40, 701–705 (April 1998)  相似文献   

16.
The low-temperature thermal and magnetic-resonance properties of a monoclinic KDy(WO4)2 single crystal are investigated. It is established that a structural phase transition takes place at T c=6.38 K. The field dependence of the critical temperature is determined for a magnetic field oriented along the crystallographic a and c axes. The initial part of the H-T phase diagram is plotted for Ha. The prominent features of the structural phase transition are typical of a second-order Jahn-Teller transition, which is not accompanied by any change in the symmetry of the crystal lattice in the low-temperature phase. The behavior of C(T) in a magnetic field shows that the transition goes to an antiferrodistortion phase. An anomalous increase in the relaxation time (by almost an order of magnitude) following a thermal pulse is observed at T>T c(H), owing to the structural instability of the lattice. A theoretical model is proposed for the structural phase transition in a magnetic field, and the magnetic-field dependence of T c is investigated for various directions of the field. Fiz. Tverd. Tela (St. Petersburg) 40, 750–758 (April 1998)  相似文献   

17.
A study of the structure and electrical and magnetic properties of the VxMn1−x S disordered system is reported. The existence of a low-temperature metal-insulator transition for Fermi-glass 0.4<x<0.5 compositions in paramagnetic phase, which is accompanied by a change in the structure and magnetic properties, has been established. An analysis of the magnetic properties permits a conjecture that current carriers become delocalized in these solid solutions at the metal-insulator transition temperature to form small ferromagnetically ordered regions (ferrons). Fiz. Tverd. Tela (St. Petersburg) 39, 1428–1431 (August 1997)  相似文献   

18.
The characteristic features of microwave (30–120 GHz) magnetoabsorption in the magnetic Kondo lattice of CeB6 at liquid-helium temperatures in strong magnetic fields are investigated. It is discovered that the absorption structure is the result of the superposition of the ESR of the cerium 4 f electrons, which has a pronounced doublet structure, and features whose position does not depend on the radiation frequency and which are associated with transitions in the magnetic phase diagram of CeB6. The character of the absorption in the vicinity of the ESR can be linked to the splitting of the 2 F 5/2 state in the crystal field; here the g factor is substantially renormalized from g=2.06±0.03 to g=1.83±0.03 as the temperature decreases from 4.2 K to 1.8 K, respectively. Pis’ma Zh. éksp. Teor. Fiz. 63, No. 6, 431–435 (25 March 1996)  相似文献   

19.
The results of investigations of the structure, electrical, and magnetic properties in the system of antiferromagnetic semiconductors FexMn1−x S (0<x⩽0.5) are described. It is established that metal-insulator transitions with respect to concentration and temperature are connected with changes in the magnetic properties of the system. Fiz. Tverd. Tela (St. Petersburg) 40, 276–277 (February 1998)  相似文献   

20.
Magnetization measurements were performed on a lanthanum manganite La0.9Sr0.1MnO3 single crystal in the temperature interval 4.2–300 K and magnetic field interval 50 Oe-55 kOe in two sample cooling regimes: 1) cooling down to 4.2 K in a high (55 kOe) magnetic field, and 2) cooling in a “zero” field. It is shown that the temperature dependences of the magnetization M(T) are substantially different in these regimes. Pronounced anomalies of M(T) were observed at temperatures T*=103 K and T c =145 K. The first anomaly is attributed to a structural transition, while the second one corresponds to a ferromagnet-paramagnet phase transition. The magnetization of a La0.9Sr0.1MnO3 single crystal in the cooling regimes studied shows typical “spin-glass” behavior. Pis’ma Zh. éksp. Teor. Fiz. 68, No. 1, 39–43 (10 July 1998)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号