共查询到20条相似文献,搜索用时 0 毫秒
1.
B. Basu 《Physics letters. A》2010,374(10):1205-4824
The geometric phase associated with a many body ground state exhibits a signature of quantum phase transition. In this context, we have studied the behavior of the geometric phase during a linear quench caused by a gradual turning off of the magnetic field interacting with a spin chain. 相似文献
2.
The kinematic approach to the theory of the geometric phase is outlined. This phase is shown to be the simplest invariant
under natural groups of transformations on curves in Hilbert space. The connection to the Bargmann invariant is brought out,
and the case of group representations described. 相似文献
3.
4.
In this paper we provide a novel way to explore the relation between quantum teleportation and quantum phase transition. We construct a quantum channel with a mixed state which is made from one dimensional quantum Ising chain with infinite length, and then consider the teleportation with the use of entangled Werner states as input qubits. The fidelity as a figure of merit to measure how well the quantum state is transferred is studied numerically. Remarkably we find the first-order derivative of the fidelity with respect to the parameter in quantum Ising chain exhibits a logarithmic divergence at the quantum critical point. The implications of this phenomenon and possible applications are also briefly discussed. 相似文献
5.
R. Jafari 《Physics letters. A》2013,377(45-48):3279-3282
A relation between geometric phases and criticality of spin chains are studied using the quantum renormalization-group approach. I have shown how the geometric phase evolve as the size of the system becomes large, i.e., the finite size scaling is obtained. The renormalization scheme demonstrates how the first derivative of the geometric phase with respect to the field strength diverges at the critical point and maximum value of the first derivative, and its position, scales with the exponent of the system size. 相似文献
6.
7.
8.
In this work controlled phase shift gates are implemented on a qaudrupolar system, by using non-adiabatic geometric phases. A general procedure is given, for implementing controlled phase shift gates in an ‘N’ level system. The utility of such controlled phase shift gates, is demonstrated here by implementing 3-qubit Deutsch–Jozsa algorithm on a spin-7/2 quadrupolar nucleus oriented in a liquid crystal matrix. 相似文献
9.
We investigate sudden change (SC) behaviors of the distance-based measures of geometric quantum discords (GQDs) for two non-interacting qubits subject to the two-sided and the one-sided thermal reservoirs. We found that the GQDs defined by different distances exhibit different SCs, and thus the SCs are the combined result of the chosen discord measure and the property of a state. We also found that the thermal reservoir may generate states having different orderings related to different GQDs. These inherent differences of the GQDs reveal that they are incompatible in characterizing quantum correlations both quantitatively and qualitatively. 相似文献
10.
Dynamics control of geometric quantum discord for two coupling qubits in a squeezed vacuum reservoir
We investigate the dynamics of geometric quantum discord of coupled qubits in a squeezed vacuum reservoir. The results show that there is distinct difference between the dynamics of geometric quantum discord and that of quantum entanglement near (or away from) the decoherence free subspace. We also find that the squeezed vacuum reservoir with high squeezed amplitude is more suitable for geometric quantum discord to survive. The robustness of geometric quantum discord is stronger than that of quantum entanglement. 相似文献
11.
The spin of a polarized neutron beam subjected to a partial projection in another direction, traces a geodesic arc in the 2-sphere ray space. We delineate the geometric phase resulting from two successive partial projections on a general quantal state and derive the direction and strength of the third partial projection that would close the geodesic triangle. The constraint for the three successive partial projections to be identically equivalent to a net spin rotation regardless of the initial state, is derived. 相似文献
12.
Jérémie Boulanger Nicolas Le Bihan Stefan Catheline Vincent Rossetto 《Annals of Physics》2012,327(3):952-958
We report the experimental observation of a geometric phase for elastic waves in a waveguide with helical shape. The setup reproduces the experiment by Tomita and Chiao [A. Tomita, R.Y. Chiao, Phys. Rev. Lett. 57 (1986) 937–940, 2471] that showed first evidence of a Berry phase, a geometric phase for adiabatic time evolution, in optics. Experimental evidence of a non-adiabatic geometric phase has been reported in quantum mechanics. We have performed an experiment to observe the polarization transport of classical elastic waves. In a waveguide, these waves are polarized and dispersive. Whereas the wavelength is of the same order of magnitude as the helix’s radius, no frequency dependent correction is necessary to account for the theoretical prediction. This shows that in this regime, the geometric phase results directly from geometry and not from a correction to an adiabatic phase. 相似文献
13.
We derive a geometric phase using the quantum kinematic approach within the complex quantum Hamilton-Jacobi formalism. The single valuedness of the wave function implies that the geometric phase along an arbitrary path in the complex plane must be equal to an integer multiple of 2π. The nonzero geometric phase indicates that we travel along the path through the branch cut of the phase function from one Riemann sheet to another. 相似文献
14.
We propose an alternative scheme to implement a two-qubit controlled-R (rotation) gate in the hybrid atom-CCA (coupled cavities array) system. Our scheme results in a constant gating time and, with an adjustable qubit-bus coupling (atom-resonator), one can specify a particular rotation R on the target qubit. We believe that this proposal may open promising perspectives for networking quantum information processors and implementing distributed and scalable quantum computation. 相似文献
15.
16.
We discuss the quantum phase transitions (QPT) in N-spin chains from the point of view of collective observables. We show that the measurement space representation is a convenient tool for the analysis of phase transitions, allowing the determination of an appropriate set of macroscopic order parameters (for a given Hamiltonian). Quantum correlations in the vicinity of the critical points are analyzed both in the ground states and low temperature thermal states. 相似文献
17.
We present rigorous investigations of the geometric phase in semiconductor microcavities. The effects of excitonic spontaneous emission, initial state setting and cavity dissipation have been discussed. It is shown that the geometric phase decays exponentially due to the presence of excitonic spontaneous emission. More importantly, the inclusion of the phase shift leads to an enhanced sensitivity for the control of the geometric phase evolution and system dynamics. 相似文献
18.
Hadamard spectroscopy has earlier been used to speed-up multi-dimensional NMR experiments. In this work, we speed-up the two-dimensional quantum computing scheme, by using Hadamard spectroscopy in the indirect dimension, resulting in a scheme which is faster and requires the Fourier transformation only in the direct dimension. Two and three qubit quantum gates are implemented with an extra observer qubit. We also use one-dimensional Hadamard spectroscopy for binary information storage by spatial encoding and implementation of a parallel search algorithm. 相似文献
19.
在绝热演化中的几何相位(即Berry相位)被推广到包括非本征态的一般量子态.这个新的几何相位同时适用于线性量子系统和非线性量子系统.它对于后者尤其重要因为非线性量子系统的绝热演化不能通过本征态的线性叠加来描述.在线性量子系统中,新定义的几何相位是各个本征态Berry相位的权重平均. 相似文献
20.
We describe anon-abelian Berry phase in polarization optics, suggested by an analogy due to Nityananda between boosts in special relativity and the
effect of elliptic dichroism on polarized light. The analogy permits a simple optical realization of the non-abelian gauge
field describing Thomas rotation. We also show how Thomas rotation can be understood geometrically on the Poincaré sphere
in terms of the Pancharatnam phase. 相似文献