首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three possible methyl-substituted phenyloxiranes have been synthesized in enantioenriched form (89-99% enantiomeric excess (ee)), and their vibrational absorption (VA) and vibrational circular dichroism (VCD) spectra have been recorded. The experimental spectra are compared to theoretical spectra obtained from quantum mechanical calculations (density functional theory with the B3LYP hybrid exchange correlation functional with 6-31++G*, aug-cc-pVDZ, or aug-cc-pVTZ basis set) and related to the physical structure of the compounds. The absolute configuration could be established directly in each case by comparing experimental and theoretical spectra. In addition, we have been able to document the changes that occur both in structures and in the VA and VCD spectra due to substituent effects on the oxirane ring.  相似文献   

2.
The first thorium poly-carbene complexes [(Ph(2)P=S)(2)C](2)Th(DME) (2) and [{[(Ph(2)P=S)(2)C](3)Th}Li(2)(DME)](n) (3) have been prepared and structurally characterized. DFT calculations reveal that the Th=C bond is polarized toward the nucleophilic carbene carbon atom, which is further verified by the experimental observation that the Th=C bond shows a nucleophilic behavior with Ph(2)CO.  相似文献   

3.
A general mechanism to rationalize Ru(IV) -catalyzed isomerization of the C=C bond in O-allylic substrates is proposed. Calculations supporting the proposed mechanism were performed at the MPWB1K/6-311+G(d,p)+SDD level of theory. All experimental observations in different solvents (water and THF) and under different pH conditions (neutral and basic) can be interpreted in terms of the new mechanism. Theoretical analysis of the transformation from precatalyst to catalyst led to structural identification of the active species in different media. The experimentally observed induction period is related to the magnitudes of the energy barriers computed for that process. The theoretical energy profile for the catalytic cycle requires application of relatively high temperatures, as is experimentally observed. Participation of a water molecule in the reaction coordinate is mechanistically essential when the reaction is carried out in aqueous medium. The new mechanistic proposal helped to develop a new experimental procedure for isomerization of allyl ethers to 1-propenyl ethers under neutral aqueous conditions. This process is an unique example of efficient and selective catalytic isomerization of allyl ethers in aqueous medium.  相似文献   

4.
Reactions of zirconacyclopentadienes with diethyl ketomalonate gave alpha-pyrans in excellent yields in the presence of BiCl3. In the absence of BiCl3, zirconacyclopentadienes did not react with diethyl ketomalonate. Tetraphenylzirconacyclopentadiene reacted with diethyl ketomalonate in the presence of BiCl3 to give a ring-opening product, dienolic ether, in 53% yield. The structures of the alpha-pyran prepared from diethyldiphenylzirconacyclopentadiene and the ring-opening product were determined by X-ray analysis. When oximinosulfonate was added to tetraethylzirconacyclopentadiene in THF at -78 degrees C, 3,4,5,6-tetraethylpyridine-2-carbonitrile was obtained in 95% yield within 10 min. The structure of the product was confirmed by X-ray analysis. When tetraethylzirconacyclopentadiene was treated with azodicarboxylate in the presence of 2 equiv of CuCl at -78 degrees C, 1,2-dialkoxycarbonyl-3,4,5,6-tetraethyl-1,2-dihydropyridazine derivatives were obtained. The structure of one of dihydropyridazine was also confirmed by X-ray analysis.  相似文献   

5.
Propargylic amines are highly useful building blocks in organic synthesis, and the corresponding structural motif has been found in various natural products and compounds of pharmaceutical relevance. This article provides an overview of the most significant advances in the preparation of propargylic amines via the direct addition of alkynes to imines and related carbon-nitrogen electrophiles in the presence of metal catalysts or promoters.  相似文献   

6.
The title compounds are cleaved cleanly at the C=N bond by singlet oxygen ((1)O(2), (1)Delta(g)) yielding arylaldehydes and N-aryl-N-methylnitrosamines. These reactions take place more rapidly at -78 degrees C than at room temperature. The effects of substituent variation at both the C-aryl and N-aryl groups were studied using a competitive method. Good correlations of the resulting rate ratios with substituent constants (sigma(-) or sigma(+)) were obtained yielding small to very small rho values indicative of small to very small changes in charge distribution between the reactant and the rate determining transition state. Electron withdrawing groups on the C-aryl moiety retard reaction somewhat by preferential stabilization of the hydrazone. Electron donors on the other hand slightly stabilize the rate determining transition state. Substituents on the N-aryl group have almost no effect. Inhibition by 3,5-di-tert-butylphenol was not observed showing that free (uncaged) radical intermediates are not involved in the mechanism. We postulate a mechanism in which the initial event is exothermic electron transfer from the hydrazone to (1)O(2) leading to an ion-radical caged pair. Subsequent covalent bond formation between the hydrazone carbon and an oxygen atom is rate controlling. The transition state for this step also has a lower enthalpy than the starting reactants, but the free energy of activation is dominated by a large negative TDeltaS++term leading to the negative temperature dependence. Direct formation of a C-O bond in the initial step is not unambiguously ruled out. Subsequent steps lead to C-N cleavage.  相似文献   

7.
Chiral amines are key components in numerous bioactive molecules. The development of efficient and economical ways to access molecules containing this functional group still remains a challenge at the forefront of synthetic chemistry. Of the methods that do exist, the trichlorosilane mediated organocatalytic reduction of ketimines offers significant potential as an alternative strategy. In this perspective, we wish to highlight the progress made in the past decade in this field and offer a direct quantitative comparison to transition-metal mediated process.  相似文献   

8.
C=N双键转移是基本的化学过程,是把醛酮转化为伯胺的方法之一.酸或碱作为C=N双键转移常用的催化剂能产生污染,后处理成本也较高.本文采用室温下光照小球藻使芳胺席夫碱C=N双键转移,拓展了C=N双键转移的新途径.小球藻在接收光能以及传递光能方面起了关键作用.不同席夫碱其C=N双键转移效果不同,与该席夫碱转移前后分子的能量...  相似文献   

9.
The aminomethylation of oxindole, 1-phenyl-3-methyl-5-pyrazolone, and N-phenyl-rhodanine was studied. Derivatives of these CH acids were obtained as a result of aminomethylation. The addition products were subjected to acid and base hydrolysis; the corresponding arylidene derivatives are formed in the case of the products of aminomethylation of oxindole and 1-phenyl-3-methyl-5-pyrazolone, while thioglycolic acids are formed in the case of N-phenylrhodanine derivatives.Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 8, pp. 1088–1093, August, 1981.  相似文献   

10.
11.
Regioselectivity increases in C=C double bond hydrogenation could be obtained for Lewis basic substrates on a Lewis acidic support by using a rhodium complex supported on a mesoporous solid.  相似文献   

12.
Irradiation of an azo-propellane derivative in which an olefinic bond is proximate to the azo group forms a cage compound containing a 1,2-diazacyclobutane ring.  相似文献   

13.
Nucleophilic addition of the peroxynitrite anion, ONOO(-), to the two prototypical carbonyl compounds, acetaldehyde and acetone, was investigated in the pH interval 7.4-14. The process is initiated by fast equilibration between the reactants and the corresponding tetrahedral adduct anion, the equilibrium being strongly shifted to the reactant side. The adduct anion also undergoes fast protonation by water and added buffers. Consequently, the rate of the bimolecular reaction between ONOO(-) and the carbonyl is strongly dependent on the pH and on the concentration of the buffer. The pK(a) of the carbonyl-ONOO adduct was estimated to be approximately 11.8 and approximately 12.3 for acetone and acetaldehyde, respectively. It is shown that both the anionic and the neutral adducts suffer fast homolysis along the weak O-O bond to yield free alkoxyl and nitrogen dioxide radicals. The yield of free radicals was determined to be about 15% with both carbonyl compounds at low and high pH, while the remainder collapses to molecular products in the solvent cage. The rate constants for the homolysis of the adducts vary from ca. 3 x 10(5) to ca. 5 x 10(6) s(-1), suggesting that they cannot act as oxidants in biological systems. This small variation around a mean value of about 10(6) s(-1) suggests that the O-O bond in the adduct is rather insensitive to its protonation state and to the nature of its carbonyl precursor. An overall reaction scheme was proposed, and all the corresponding rate constants were evaluated. Finally, thermokinetic considerations were employed to argue that the formation of dioxirane as an intermediate in the reaction of ONOO(-) with acetone is an unlikely process.  相似文献   

14.
The addition reactions of CH3 to Csp 2 and Nsp 2 inE-but-2-ene,E-2-azabut-2-ene andE-azomethane were studied theoretically at the level of a semiempirical quantum-chemical method. Similar reactions withE-azoethane andE-azoisopropane were also studied. The activation enthalpies were calculated by means of the Austin Model 1 (AM1) unrestricted Hartree-Fock (UHF) approximation. The calculated data qualitatively support those available in the literature: the activation enthalpies of the additions to Nsp 2 are larger than those to Csp 2. The results further support the validity of the Hammond postulate.  相似文献   

15.
The usual empirical rule stating that the C=C bond is more reactive than the C=O group for catalytic hydrogenations of unsaturated aldehydes is invalidated from the present study. Density functional theory calculations of all the competitive hydrogenation routes of acrolein on Pt(111) reveals conversely that the attack at the C=O bond is systematically favored. The explanation of such catalytic behavior is the existence of metastable precursor states for the O-H bond formation showing that the attack at the oxygen atom follows a new preferential mechanism where the C=O moiety is not directly bonded with the Pt surface atoms, hence yielding an intermediate pathway between Langmuir-Hinshelwood and Rideal-Eley general types of mechanisms. When the whole catalytic cycle is considered, our results reconcile with experimental studies devoted to hydrogenation of acrolein on Pt, since the desorption step of the partially hydrogenated product (unsaturated alcohol versus saturated aldehyde) plays a key role for the selectivity.  相似文献   

16.
DFT methods are used to quantify the relationship between M-C and H-C bond energies; for MLn = Re(eta5-C5H5)(CO)2H and fluorinated aryl ligands, theoretical and experimental investigations of ortho-fluorine substitution indicate a much larger increase in the M-C than in the H-C bond energy, so stabilising C-H activation products.  相似文献   

17.
The Vaska-type iridium(I) complex [IrCl(CO){PPh(2)(2-MeC(6)H(4))}(2)] (1), characterized by an X-ray diffraction study, was obtained from iridium(III) chloride hydrate and PPh(2)(2,6-MeRC(6)H(3)) with R=H in DMF, whereas for R=Me, activation of two ortho-methyl groups resulted in the biscyclometalated iridium(III) compound [IrCl(CO){PPh(2)(2,6-CH(2)MeC(6)H(3))}(2)] (2). Conversely, for R=Me the iridium(I) compound [IrCl(CO){PPh(2)(2,6-Me(2)C(6)H(3))}(2)] (3) can be obtained by treatment of [IrCl(COE)(2)](2) (COE=cyclooctene) with carbon monoxide and the phosphane in acetonitrile. Compound 3 in CH(2)Cl(2) undergoes intramolecular C-H oxidative addition, affording the cyclometalated hydride iridium(III) species [IrHCl(CO){PPh(2)(2,6-CH(2)MeC(6)H(3))}{PPh(2)(2,6-Me(2)C(6)H(3))}] (4). Treatment of 2 with Na[BAr(f) (4)] (Ar(f)=3,5-C(6)H(3)(CF(3))(2)) gives the fluxional cationic 16-electron complex [Ir(CO){PPh(2)(2,6-CH(2)MeC(6)H(3))}(2)][BAr(f) (4)] (5), which reversibly reacts with dihydrogen to afford the delta-agostic complex [IrH(CO){PPh(2)(2,6-CH(2)MeC(6)H(3))}{PPh(2)(2,6-Me(2)C(6)H(3))}][BAr(f)(4)] (6), through cleavage of an Ir-C bond. This species can also be formed by treatment of 4 with Na[BAr(f)(4)] or of 2 with Na[BAr(f)(4)] through C-H oxidative addition of one ortho-methyl group, via a transient 14-electron iridium(I) complex. Heating of the coordinatively unsaturated biscyclometalated species 5 in toluene gives the trans-dihydride iridium(III) complex [IrH(2)(CO){PPh(2)(2,6-MeC(6)H(3)CH=CHC(6)H(3)Me-2,6)PPh(2)}][BAr(f) (4)] (7), containing a trans-stilbene-type terdentate ligand, as result of a dehydrogenative carbon-carbon double bond coupling reaction, possibly through an iridium carbene species.  相似文献   

18.
Hydride transfer from 10-methyl-9,10-dihydroacridine (AcrH(2)) to 3,6-diphenyl-1,2,4,5-tetrazine (Ph(2)Tz), which contains a N=N double bond, occurs efficiently in the presence of Sc(OTf)(3) (OTf = OSO(2)CF(3)) in deaerated acetonitrile (MeCN) at 298 K, whereas no reaction occurs in the absence of Sc(3+). The observed second-order rate constant (k(obs)) increases with increasing Sc(3+) concentration to approach a limited value. When AcrH(2) is replaced by the dideuterated compound (AcrD(2)), the rate of Sc(3+)-promoted hydride transfer exhibits the same primary kinetic isotope effect (k(H)/k(D) = 5.2+/-0.2), irrespective of Sc(3+) concentration. Scandium ion also promotes an electron transfer from CoTPP (TPP(2)(-) = tetraphenylporphyrin dianion) and 10,10'-dimethyl-9,9'-biacridine [(AcrH)(2)] to Ph(2)Tz, whereas no electron transfer from CoTPP or (AcrH)(2) to Ph(2)Tz occurs in the absence of Sc(3+). In each case, the observed second-order rate constant of electron transfer (k(et)) shows a first-order dependence on [Sc(3+)] at low concentrations and a second-order dependence at higher concentrations. Such dependence of k(et) on [Sc(3+)] is ascribed to formation of 1:1 and 1:2 complexes between Ph(2)Tz(*)(-) and Sc(3+) at the low and high concentrations of Sc(3+), respectively, which results in acceleration of the rate of electron transfer. The formation of 1:2 complex has been confirmed by the ESR spectrum in which the hyperfine structure is different from that of free Ph(2)Tz(*)(-). The 1:2 complex formation results in the saturated kinetic dependence of k(obs) on [Sc(3+)] for the Sc(3+)-promoted hydride transfer, which proceeds via Sc(3+)-promoted electron transfer from AcrH(2) to Ph(2)Tz, followed by proton transfer from AcrH(2)(*)(+) to the 1:1 Ph(2)Tz(*)(-)-Sc(3+) complex and the subsequent facile electron transfer from AcrH(*) to Ph(2)TzH(*). The effects of counteranions on the Sc(3+)-promoted electron transfer and hydride transfer reactions are also reported.  相似文献   

19.
To elucidate the bonding situation in the widely discussed hypervalent sulfur nitrogen species, the charge density distributions rho(r) and related properties of four representative compounds, methyl(diimido)sulfinic acid H(NtBu)(2)SMe (1), methylene-bis(triimido)sulfonic acid H(2)C[S(NtBu)(2) (NHtBu)](2) (2), sulfurdiimide S(NtBu)(2) (3), and sulfurtriimide S(NtBu)(3) (4), were determined experimentally by high-resolution low-temperature X-ray diffraction experiments (T = 100 K). This set of molecules represents an ideal frame of reference for the comparison of SN bonding modes, because they contain short formal S=N double bonds as well as long S-N single bonds, some of them influenced by inter- or intramolecular hydrogen bonds. For comparison, the gas-phase ab initio calculations of the four model compounds, H(NMe)(2)SMe, H(2)C[S(NMe)(2)(NHMe)](2), S(NMe)(2), and S(NMe)(3), were performed. The topological features were found to be not particularly sensitive with respect to different substituents R (R = H, Me, tBu). In this paper, it is documented that theory and experiment differ in the eigenvalues of the Hessian matrix because of systematically differing positions of the bond critical points but agree very well concerning the spatial Laplacian distribution and the distinct polarization of all investigated sulfur-nitrogen bonds. Both recommend the S(+)-N(-) formulation of sulfur nitrogen bonds in 1 and 2 since all nitrogen atoms are found to be sp(3) hybridized. The planar SNx (x = 2, 3) units in the diimide 3 and the triimide 4 reveal characteristics of m-center-n-electron systems. For none of the investigated S-N bonds, a classical double bond formulation can be supported. This is further substantiated by the NBO/NRT approach. Valence expansion to more than eight electrons at the sulfur atom can definitely be excluded to explain the bonding.  相似文献   

20.
Azomethine ylides generated by reaction of difluorocarbene with N-alkyl- and N-arylimines derived from benzaldehyde and benzophenone react with N-benzylidenebenzenesulfonamide in a regioselective fashion, yielding the corresponding imidazolidin-4-ones via 1,3-dipolar cycloaddition at the C=N bond. Ylides generated from benzaldehyde imines give rise to mixtures of stereoisomeric 2,5-diphenyl-1-(phenylsulfonyl)-imidazolidin-4-ones, the cis isomer prevailing.Translated from Zhurnal Organicheskoi Khimii, Vol. 40, No. 10, 2004, pp. 1542–1548.Original Russian Text Copyright © 2004 by Novikov, Khlebnikov, Egarmin, Kopf, Kostikov.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号