首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ultrasound-assisted extraction of capsaicinoids from peppers   总被引:1,自引:0,他引:1  
Barbero GF  Liazid A  Palma M  Barroso CG 《Talanta》2008,75(5):1332-1337
The development of a rapid, reproducible and simple method of extraction of the majority capsaicinoids (nordihydrocapsaicin, capsaicin, dihydrocapsaicin, homocapsaicin and homodihydrocapsaicin) present in hot peppers by the employment of ultrasound-assisted extraction is reported. The study has covered four possible solvents for the extraction (acetonitrile, methanol, ethanol and water), the optimum temperature for extraction (10–60 °C), the extraction time (2–25 min), the quantity of sample (0.2–2 g), and the volume of solvent (15–50 mL). Under the optimum conditions of the method developed, methanol is employed as solvent, at a temperature of 50 °C and an extraction time of 10 min. The repeatability and reproducibility of the method (R.S.D. < 3%) have been determined. The capsaicinoids extracted have been analysed by HPLC with fluorescence detection and using monolithic columns for the chromatographic separation. The method developed has been employed for the quantification of the various capsaicinoids present in different varieties of hot peppers cultivated in Spain.  相似文献   

2.
An analytical methodology including pressurized liquid extraction (PLE) as sample treatment to isolate retinyl acetate and tocopherols from infant formulas has been developed. The milk extracts were kept at −18 °C for 30 min and after filtration could be injected directly into the chromatographic system. Thus, a rapid and simple routine control method of these products is possible.

The parameters affecting both the extraction process and the liquid chromatography (LC) system were optimized. PLE was performed using one cycle of extraction during a static time of 5 min. Methanol was chosen as the extraction solvent for a temperature of 50 °C. Chromatographic separation was accomplished using a RP-18 column; the mobile phase used was methanol–water (94:6, v/v) containing 2.5 mM acetic acid/sodium acetate buffer. Electrochemical detection in amperometric mode with a glassy carbon electrode at +1100 mV was applied. The proposed methodology was successfully used for the determination of retinyl acetate, δ-tocopherol, (β + γ)-tocopherol and -tocopherol in different infant formulas. The analytes were evaluated in the same chemical form present in the samples. Recoveries were between 92 and 106%. A certified reference material of milk powder was also analyzed.  相似文献   


3.
Khajeh M  Yamini Y  Hassan J 《Talanta》2006,69(5):1088-1094
In the present work, a rapid method for the extraction and determination of chlorobenzenes (CBs) such as monochlorobenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, 1,4-dichlorobenzene, 1,2,3-trichlorobenzene and 1,2,4-trichlorobenzene in water samples using the headspace solvent microextraction (HSME) and gas chromatography/electron capture detector (ECD) has been described. A microdrop of the dodecane containing monobromobenzene (internal standard) was used as extracting solvent in this investigation. The analytes were extracted by suspending a 2.5 μl extraction drop directly from the tip of a microsyringe fixed above an extraction vial with a septum in a way that the needle passed through the septum and the needle tip appeared above the surface of the solution. After the extraction was finished, the drop was retracted back into the needle and injected directly into a GC column. Optimization of experimental conditions such as nature of the extracting solvent, microdrop and sample temperatures, stirring rate, microdrop and sample volumes, the ionic strength and extraction time were investigated. The optimized conditions were as follows: dodecane as the extracting solvent, the extraction temperature, 45 °C; the sodium chloride concentration, 2 M; the extraction time, 5.0 min; the stirring rate, 500 rpm; the drop volume, 2.5 μl; the sample volume, 7 ml; the microsyringe needle temperature, 0.0 °C. The limit of detection (LOD) ranged from 0.1 μg/l (for 1,3-dichlorobenzene) to 3.0 μg/l (for 1,4-dichlorobenzene) and linear range of 0.5–3.0 μg/l for 1,2-dichlorobenzene, 1,3-dichlorobenzene and from 5.0 to 20.0 μg/l for monochlorobenzene and from 5.0 to 30 μg/l for 1,4-dichlorobenzene. The relative standard deviations (R.S.D.) for most of CBs at the 5 μg/l level were below 10%. The optimized procedure was successfully applied to the extraction and determination of CBs in different water samples.  相似文献   

4.
Pressurized liquid extraction (PLE) is a relatively new technique applicable for the extraction of persistent organic pollutants from various matrices. The main advantages of this method are short time and low consumption of extraction solvent. The effects of various operational parameters (i.e. temperature of extraction, number of static cycles and extraction solvent mixtures) on the PLE efficiency were investigated in this study. Fish muscle tissue containing 3.2% (w/w) lipids and native polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs) and other related compounds was used for testing. Purification of crude extracts was carried out by gel permeation chromatography employing Bio-Beads S-X3. Identification and quantitation of target indicator PCBs and OCPs was performed by high-resolution gas chromatography (HRGC) with two parallel electron-capture detectors (ECDs). Results obtained by the optimized PLE procedure were compared with conventional Soxhlet extraction (the same extraction solvent mixtures hexane–dichloromethane (1:1 v/v) and hexane–acetone (4:1 v/v) were used). The recoveries obtained by PLE operated at 90–120 °C were either comparable to “classic” Soxhlet extraction (for higher-chlorinated PCB congeners and DDT group) or even better (for lower chlorinated analytes). The highest recoveries were obtained for three static 5 min extraction cycles.  相似文献   

5.
A liquid–liquid extraction method using diethyl ether as organic solvent was optimized simultaneously for five 1,4-dihydropyridines (amlodipine, nitrendipine, felodipine, lacidipine and lercanidipine) belonging to the group of calcium channel blockers. Some experimental tools such as a full factorial design, a central composite design and the Multisimplex program were used to optimise the concentration of NaOH, volume of organic solvent and shaking time as main factors that influence the liquid–liquid extraction procedure. Following the extraction, the quantitation of the 1,4-dihydropyridines concentrations were performed by high-performance liquid chromatography with diode-array detector. Therefore, the studied compounds were separated quantitatively on a Supelcosil ABZ+Plus, 25 cm × 4.6 mm i.d., 5 μm column which was set at 30 °C, using as mobile phase, a mixture of acetonitrile–water (70:30, v/v) containing 10 mM acetate buffer (pH 5) and setting the detector at a wavelength value of 360 nm. It was concluded that the main factors that influence in the extraction process were the volume of organic solvent and the shaking time. The Multisimplex program suggested as optimal conditions an average of 6 ml of organic solvent and 23 min of shaking time. For these values, the optimised liquid–liquid extraction method showed good values of recoveries (80% for amlodipine and higher than 90% for the rest of the compounds) and low values of R.S.D. (<10%) in the reproducibility of the extraction what makes it reliable for the quantification of all the studied compounds in human plasma.  相似文献   

6.
A HPLC method with automated column switching and UV-diode array detection is described for the simultaneous determination of Vitamin D3 and 25-hydroxyvitamin D3 (25-OH-D3) in a sample of human plasma. The system uses a BioTrap precolumn for the on-line sample cleanup. A sample of 1 ml of human plasma was treated with 2 ml of a mixture of ethanol–acetonitrile (2:1 (v/v)). Following centrifugation, the supernatant was evaporated to dryness under a stream of dry and pure nitrogen. The residue was reconstituted in 250 μL of a solution of methanol 5 mmol l−1 phosphate buffer, pH 6.5 (4:1 (v/v)), and a 200 μl aliquot of this solution was injected onto the BioTrap precolumn. After washing during 5 min with a mobile phase constituted by a solution of 6% acetonitrile in 5 mmol l−1 phosphate buffer, pH 6.5 (extraction mobile phase), the retained analytes were then transferred to the analytical column in the backflush mode. The analytical separation was then performed by reverse-phase chromatography in the gradient elution mode with the solvents A and B (Solvent A: acetonitrile–phosphate buffer 5 mmol l−1, pH 6.5; 20:80 (v/v); solvent B: methanol–acetonitrile–tetrahydrofuran, 65:20:15 (v/v)). The compounds of interest were detected at 265 nm. The method was linear in the range 3.0–32.0 ng ml−1 with a limit of quantification of 3.0 ng ml−1. Quantitative recoveries from spiked plasma samples were between 91.0 and 98.0%. In all cases, the coefficient of variation (CV) of the intra-day and inter-day-assay precision was ≤2.80%. The proposed method permitted the simultaneous determination of Vitamin D3 and 25-OH-D3 in 16 min, with an adequate precision and sensitivity. However, the overlap of the sample cleanup step with the analysis increases the sampling frequency to five samples h−1. The method was successfully applied for the determination of Vitamin D3 and 25-OH-D3 in plasma from 46 female volunteers, ranging from 50 to 94 years old. Vitamin D3 and 25-OH-D3 concentrations in plasma were found from 4.30–40.70 ng ml−1 (19.74 ± 9.48 ng ml−1) and 3.1–36.52 ng ml−1 (7.13 ± 7.80 ng ml−1), respectively. These results were in good agreement with data published by other authors.  相似文献   

7.
A rapid and environmentally friendly methodology was developed for the extraction of pyrethroid insecticides from semi permeable membrane devices (SPMDs), in which they were preconcentrated in gas phase. The method was based on gas chromatography mass–mass spectrometry determination after a microwave-assisted extraction, in front of the widely employed dialysis method. SPMDs were extracted twice with 30 mL hexane:acetone, irradiated with 250 W power output, until 90 °C in 10 min, this temperature being held for another 10 min. Clean-up of the extracts was performed by acetonitrile–hexane partitioning and solid-phase extraction (SPE) with a combined cartridge of 2 g basic-alumina, deactivated with 5% water, and 500 mg C18.

Pyrethroids investigated were Allethrin, Prallethrin, Tetramethrin, Bifenthrin, Phenothrin, λ-Cyhalothrin, Permethrin, Cyfluthrin, Cypermethrin, Flucythrinate, Esfenvalerate, Fluvalinate and Deltamethrin. The main pyrethroid synergist compound, Pyperonyl Butoxide, was also studied. Limit of detection values ranging from 0.3 to 0.9 ng/SPMD and repeatability data, as relative standard deviation, from 2.9 to 9.4%, were achieved. Pyrethroid recoveries, for spiked SPMDs, with 100 ng of each one of the pyrethroids evaluated, were from 61 ± 8 to 103 ± 7% for microwave-assisted extraction, versus 54 ± 4 to 104 ± 3% for dialysis reference method. Substantial reduction of solvent consumed (from 400 to 60 mL) and analysis time (from 48 to 1 h) was achieved by using the developed procedure.

High concentration levels of pyrethroid compounds, from 0.14 to 7.3 μg/SPMD, were found in indoor air after 2 h of a standard application.  相似文献   


8.
In this study the extraction efficiency of pressurized liquid extraction (PLE), employing different extraction solvent mixtures under different extraction conditions, was compared with extraction efficiencies of commonly used procedures, Soxhlet extraction and extraction enhanced by sonication. Spruce needles and fish tissue were selected as test samples. Purification of obtained extracts was carried out by gel permeation chromatography (GPC) employing gel Bio-Beads S-X3. Identification and quantitation of target PAHs was performed by high-performance liquid chromatography with fluorescence detection (HPLC–FLD).

Within optimisation of PLE conditions, temperature of extraction, type of solvent, duration and number of static cycles as well as the influence of sample pre-treatment (drying, homogenisation, etc.) were tested. Comparison of the extraction efficiency of PLE with the efficiencies of the other techniques was done under the optimised conditions, i.e. sample slurry obtained by desiccation with anhydrous sodium sulphate, extracted at 100 °C in 1 cycle lasting 5 min. Hexane:acetone (1:1, v/v) was chosen as the most suitable extraction solvent for isolation of analytes from test samples.

Comparison of mentioned isolation techniques with respect to the amount of co-extracts, procedure blank levels and time and solvent volume demands was also done.  相似文献   


9.
A low solvent consumption method for Fourier transform infrared spectroscopy (FT-IR) determination of doxylamine succinate in pharmaceuticals has been developed. The analyte was continuous and selectively extracted with a 13% (v/v) ethanol:chloroform solvent mixture, recirculating the solvent through the sample and monitoring the process by FT-IR. Doxylamine succinate was determined by on-line standard addition measuring the peak area in the regions 1730–1710 and 1485–1462 cm−1 corrected with a two-point baseline established between 2000 and 1800 cm−1. This new method implies low volumes of chloroformic solvent mixture, only 2.6 mL per sample, in front of classical batch FT-IR methods, improving analytical efficiency and reducing waste generation. The on-line extraction and standard addition determination of doxylamine succinate allowed a throughput of 10 h−1.  相似文献   

10.
A method using off-line supercritical fluid extraction (SFE) and micro liquid chromatography (μLC) with UV detection at 260 nm, was developed for selective determination of fenpyroximate in apple samples. The packed capillary liquid chromatography method utilises 20 μl injection volumes with on-column focusing. A 350×0.32 mm capillary column packed with Kromasil 100-C18 of 5 μm particle size was used with a mobile phase of acetonitrile–10 mM ammonium acetate (85:15, v/v) at a flow of 5 μl/min. A two-step SFE procedure was used to extract fenpyroximate selectively in 2 g apple samples, with Hydromatrix (HMX) added as a water absorbent at a 1:1 (w:w) ratio. Fenpyroximate was extracted at 200 bar and 90°C for 15 min using carbon dioxide at a flow of 2 ml/min, and solvent trapping collection in 10 ml acetonitrile. The volume of the acetonitrile extract was reduced by evaporation and water was added to a final composition of acetonitrile–water (40:60, v/v). The resulting 2.0 ml solution was filtered using a 0.45 μm poly(vinylidene difluoride) syringe filter before μLC analysis. Validation of the method was accomplished with apple samples spiked with fenpyroximate, covering the range of 0.1 to 1.0 μg/kg. The within-day and between-day repeatabilities were in the range 4–18% relative standard deviation. Accuracy, measured as recovery, was found to be approximately 60%. Apple samples from a field treated with fenpyroximate were analysed. None of the samples contained fenpyroximate above the quantification level.  相似文献   

11.
A rapid method has been developed to extract and quantitatively measure the total oil content in poultry feeds using a domestic microwave oven. The optimized extraction procedure involves the replicate (6×) extraction of 5 g of ground feed with 12 ml of hexane for 20 s in a 900 W oven. Each replicate involves the collection of the resulting miscella and its replacement with fresh solvent for re-extraction. The collected extracts were centrifuged and transferred to a vial. The solvent was evaporated to a constant weight and the residual lipid weighed. In comparison to conventional Soxhlet extraction method, lipid contents obtained using the optimized microwave procedure was not significantly different. However, FTIR analysis indicated that the microwave procedure was superior in minimizing the formation of free fatty acids (FFA) relative to the Soxhlet procedure if the temperature of the sample was kept within the range of 45–50 °C. This simple, sequential extraction procedure is rapid, highly efficient and provides a simple mean of quantitating the lipid content of poultry feed in less than 40 min without the need for specialized microwave oven.  相似文献   

12.
Han F  He YZ  Yu CZ 《Talanta》2008,74(5):1371-1377
A convenient and automated method for on-line pretreatment and determination of three parabens (i.e. methyl, ethyl and propyl p-hydroxybenzoate) in cosmetic products is proposed by using flow injection analysis (FIA), solid-phase extraction (SPE) and micellar electrokinetic chromatography (MEKC). An improved split–flow interface is used to couple SPE on C8-bonded silica with MEKC separation, which can avoid running buffer contamination and reduce buffer consumption, especially, containing expensive reagents. The analytes are loaded onto a C8 column at 0.6 mL/min for 60 s and eluted with a mixed eluent of 40% (v/v) 10 mmol/L sodium tetraborate buffer (pH 9.3) and 60% (v/v) ethanol at 0.75 mL/min. The MEKC separation is accomplished with a running buffer of 20 mmol/L sodium tetraborate (pH 9.3) containing 100 mmol/L sodium dodecyl sulfate (SDS) at 15 kV. For butyl p-hydroxybenzoate did not be detected in the cosmetic products, it was used as an internal standard (IS) added into the real samples. This FIA–SPE–MEKC method using IS allows the sample separation within 12 min and the sample throughput of five samples per hour with the relative standard deviation (R.S.D.) less than 2.3% (n = 5). The limits of detection (LOD) are in the range from 0.07 to 0.1 μg/mL (S/N = 3 and n = 11). The proposed method has been used to determine three parabens in real cosmetic products satisfactorily.  相似文献   

13.
Raman spectra of highly fluorinated CxF samples (1<x<2) prepared at room temperature and 515°C were measured. CxF samples prepared at room temperature exhibited two Raman bands at 1593–1583 and 1555–1542 cm−1. Graphite samples fluorinated at 515°C for 1 and 2 min also gave similar bands at 1581–1580 and 1550–1538 cm−1. However, graphite samples fluorinated from 15 min to 10 h at 515°C no longer showed such spectra. The Raman peaks shifted to lower frequencies with increasing fluorine concentration in CxF. This trend is due to the weakening of the C---C bonds of the graphene layers. Observation of both kinds of Raman bands suggests the coexistence of two highly fluorinated phases, C2F and C1F, in the samples. The process of formation of graphite fluoride is discussed on the basis of the Raman spectra of CxF samples obtained at 515°C.  相似文献   

14.
NaY zeolite tubular membranes in an industrial scale of 80 cm long were synthesized on monolayer and asymmetric porous supports. The quality of synthesized membranes were evaluated by pervaporation (PV) experiments in 80 cm long at 75 °C in a mixture of water (10 wt.%)/ethanol (90 wt.%), resulting in higher permeation fluxes of 5.1 kg m−2 h−1 in the monolayer type membrane and of 9.1–10.1 kg m−2 h−1 in the asymmetric-type membranes, respectively. The uniformity with small performance fluctuation in longitudinal direction of the membranes were observed by PV for 10–12 cm long samples at 50 °C in a mixture of methanol (10 wt.%)/MTBE (90 wt.%). The ethanol single component permeation experiments in PV and vapor permeation (VP) up to 130 °C and 570 kPa were performed to determine the relations between the ethanol flux and the ethanol pressure difference across the membrane which is represented by permeance (Π, mol m−2 s−1 Pa−1) for estimate of potential of ethanol extraction through the present NaY zeolite membranes applying feasible studies. Results indicate that (1) the permeation fluxes are linearly proportional to the driving force of vapor pressure for each sample in VP and PV. The permeances through an asymmetric support type membrane were rather constant of 0.6–1.2 × 10−7 mol m−2 s−1 Pa−1 in the wide temperature range of 90–130 °C in PV and VP, indicating that the ethanol permeances have weak temperature dependency with the feed at the saturated vapor pressure.

The results of superheating VP experiments showed that ethanol permeation fluxes are increased with increasing of the degree of superheating at a given constant feed vapor pressure. The ethanol permeances are increased with increasing of temperature at a given feed vapor pressure. The superheating VP could be a feasible process in industry.  相似文献   


15.
The photophysical properties of two new tetra substituted derivatives of pyrene: 1,3,6,8-tetraethynylpyrene (TEP) and 1,3,6,8-tetrakis(trimethylsilylethynyl)pyrene (TEP-TMS) have been studied. Studies were done with respect to mirror image symmetry in the absorption and emission spectra and permissive or forbidden nature of S0–S1 transition, solvent sensitivity of the first and third vibronic bands and fluorescence anisotropy. Both the derivatives exhibited a strongly allowed S0–S1 transition, high fluorescence quantum yield, shorter fluorescence lifetime compared to pyrene and invariance of the vibronic band intensity ratio to solvent polarity. The behavior of the two pyrene derivatives validates the hypothesis “solvent polarity mediates vibronic coupling and therefore the emission band intensities, for forbidden S0–S1 transitions”. The trimethylsilyl derivative (TEP-TMS) was characterized by a strong fluorescence in solid state. The tetraethynyl derivative (TEP) showed high fluorescence anisotropy comparable to the well-known anisotropy probe DPH in glycerol at 0 °C. The fluorescence intensities of TEP and TEP-TMS did not show any significant change in the temperature ranger 0–40 °C for a low viscous solvent like ethanol and in the range 0–60 °C in glycerol. Unlike pyrene, no excimer emission was observed even up to 10−3 M for TEP and TEP-TMS.  相似文献   

16.
Rapid leaching procedures by Pressurized Liquid Extraction (PLE) have been developed for As, Cd, Cr, Ni and Pb leaching from environmental matrices (marine sediment and soil samples). The Pressurized Liquid Extraction is completed after 16 min. The released elements by acetic acid Pressurized Liquid Extraction have been evaluated by inductively coupled plasma-optical emission spectrometry. The optimum multi-element leaching conditions when using 5.0 ml stainless steel extraction cells, were: acetic acid concentration 8.0 M, extraction temperature 100 °C, pressure 1500 psi, static time 5 min, flush solvent 60%, two extraction steps and 0.50 g of diatomaceous earth as dispersing agent (diatomaceous earth mass/sample mass ratio of 2). Results have showed that high acetic acid concentrations and high extraction temperatures increase the metal leaching efficiency. Limits of detection (between 0.12 and 0.5 μg g− 1) and repeatability of the over-all procedure (around 6.0%) were assessed. Finally, accuracy was studied by analyzing PACS-2 (marine sediment), GBW-07409 (soil), IRANT-12-1-07 (cambisol soil) and IRANT-12-1-08 (luvisol soil) certified reference materials (CRMs). These certified reference materials offer certified concentrations ranges between 2.9 and 26.2 μg g− 1 for As, from 0.068 to 2.85 μg g− 1 for Cd, between 26.4 and 90.7 μg g− 1 for Cr, from 9.3 to 40.0 μg g− 1 for Ni and between 16.3 and 183.0 μg g− 1 for Pb. Recoveries after analysis were between 95.7 and 105.1% for As, 96.2% for Cd, 95.2 and 100.6% for Cr, 95.7 and 103% for Ni and 94.2 and 105.5% for Pb.  相似文献   

17.
A fast and reliable analytical method using microwave assisted extraction has been developed. Several extraction solvents (methanol (MeOH) and ethanol (EtOH), 30-70% in water and water), temperatures (50-150 °C), extraction solvent volume, as well as the sample size (1.0-0.1 g) and extraction time (5-30 min) were studied for the optimization of the extraction protocol. The optimized extraction conditions for quantitative recoveries were: 0.5 g of sample, 50 °C, 20 min and 50% ethanol as extracting solvent. No degradation of the isoflavones was observed using the developed extraction protocol and a high reproducibility was achieved (>95%).  相似文献   

18.
Cadmium concentration in lake sediments is determined by suspending the solid samples in a solution containing 5% (v/v) concentrated nitric acid and 0.1% (v/v) Triton X-100. Three modifiers were tested for the direct determination. The furnace temperature programmes and appropriate amount for each modifier were optimised to get the highest signal and the best separation between the atomic and background signals. The drying stage is performed by programming a 400 °C temperature, a ramp time of 25 s and hold time of 10 s on the power supply of the atomiser. No ashing step is used and platform atomisation is carried out at 2200 °C. W–Rh permanent modifier combined with conventional modifier by delivering 10 μl of 0.50% (w/v) NH4H2PO4 solution was the best chemical modifier for cadmium determination. This modifier also acts as a liquid medium for the slurry, thus simplifying the procedure. Calibration is performed using aqueous standards in the 1–5 μg l−1 range. The optimised method gave a limit of detection of 0.56 ng ml−1, characteristic mass of 10.1±0.8 pg for aqueous standard, 9.6±0.7 pg for slurry samples containing different Cd concentrations and good precision (7.6–5.2%). The method was validated by analysing four certified reference lake sediment materials: LKSD-1, LKSD-2, LKSD-3 and LKSD-4; satisfactory recoveries were obtained (90.0–96.3%) and no statistical differences were observed between the experimental and the certified cadmium concentration. The developed methodology was used to determine cadmium in three ‘real’ sediment samples from lakes in the area of Wielkopolski National Park, Poland.  相似文献   

19.
Pyrolysis of textile wastes: I. Kinetics and yields   总被引:1,自引:0,他引:1  
Thermal behavior of textile waste was studied by thermogravimetry at different heating rates and also by semi-batch pyrolysis. It was shown that the onset temperature of mass loss is within 104–156 °C and the final reaction temperature is within 423–500 °C. The average mass loss is 89.5%. There are three DTG peaks located at the temperature ranges of 135–309, 276–394 and 374–500 °C, respectively. The first two might be associated with either with decomposition of the hemicellulose and cellulose or with different processes of cellulose decomposition. The third peak is possibly associated to a synthetic polymer. At a temperature of 460 °C, the expected amount of volatiles of this waste is within 85–89%. The kinetic parameters of the individual degradation processes were determined by using a parallel model. Their dependence on the heating rate was also established. The pyrolysis rate is considered as the sum of the three reaction rates. The pyrolysis in a batch reactor at 700 °C and nitrogen flow of 60 ml/min produces 72 wt.% of oil, 13.5 wt.% of gas and 12.5 wt.% of char. The kinetic parameters of the first peak do not vary with heating rate, while those of the second and the third peak increase and decrease, respectively, with an increasing heating rate, proving the existence of complex reaction mechanisms for both cases.  相似文献   

20.
A procedure for chromium preconcentration and speciation with a dual mini-column sequential injection system coupled with electrothermal atomic absorption spectrometry (ETAAS) was developed. At pH 6, the sample solution was firstly aspirated to flow through a Chlorella vulgaris cell mini-column on which the Cr(III) was retained. The effluent was afterwards directed to flow through a 717 anion exchange resin mini-column accompanied by the retention of Cr(VI). Thereafter, Cr(III) and Cr(VI) were eluted by 0.04 mol L− 1 and 1.0 mol L− 1 nitric acid, respectively, and the eluates were quantified with ETAAS. Chemical and flow variables governing the performance of the system were investigated. By using a sampling volume of 600 µL, sorption efficiencies of 99.7% for Cr(III) and 99% for Cr(VI) were achieved along with enrichment factors of 10.5 for Cr(III) and 11.6 for Cr(VI), within linear ranges of 0.1–2.5 µg L− 1 for Cr(III) and 0.12–2.0 µg L− 1 for Cr(VI). Detection limits of 0.02 µg L− 1 for Cr(III) and 0.03 µg L− 1 for Cr(VI) along with RSD values of 1.9% for Cr(III) and 2.5% for Cr(VI) (1.0 µg L− 1, n = 11) were obtained. The procedure was validated by analyzing a certified reference material of GBW08608 and further demonstrated by chromium speciation in river and tap water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号