首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A scheme has been proposed to classify valence bond(VB) wave functions for the calculations of ground and excited states,according to the symmetry properties of one-electron orbitals which are involved in the construction of VB wave functions.This scheme is illustrated by the examples of BeH and BH.Ab initio VB computations of these two test molecules in combination with the present classification scheme give reliable results.For example,calculation results show that the state C2∑ of BeH is stable,with the bonding energy 0.87 eV and bond length 0.238nm,which are in good agreement with those obtained by Gerratt et al.The bonding features of ground and low-lying excited states of BeH and BH are discussed.  相似文献   

2.
This project aims to attack the frontiers of electronic structure calculations on the excited states of large molecules and molecular aggregates by developing novel theoretical and computational methods. The methodology development is especially based on the time-dependent density functional theory (TDDFT) and valence bond (VB) theory, and is expected to be computationally effective and accurate as well. Research works on the following related subjects will be performed: (1) The analytical energy-derivative approaches for electronically excited state within TDDFT will be developed to reduce bypass the computational costs in the calculation of molecular excited-state properties. (2) The ab initio methods for electronically excited state based on VB theory and hybrid TDDFT-VB method will be developed to overcome the limitations of current TDDFT in simulating photophysics and photochemistry. (3) For larger aggregates, neither ab initio methods nor TDDFT is applicable. We intend to build the effective model Hamiltonian by developing novel theoretical and computational methods to calculate the involved microscopic physical parameters from the first-principles methods. The constructed effective Hamiltonian is then used to describe the excitonic states and excitonic dynamics of the natural or artificial photosynthesized systems, organic or inorganic photovoltaic cell. (4) The condensed phase environment is taken into account by combining the developed theories and algorithms based on TDDFT and VB with the polarizable continuum solvent models (PCM), molecular mechanism (MM), classical electrodynamics (ED) or molecular dynamics (MD) theory. (5) Highly efficient software packages will be designed and developed.  相似文献   

3.
林晨升  刘春万 《中国化学》1999,17(6):579-585
The structures, energies, atomic chaiges and IR spectra of complexes (CH2)2O…XY (X, Y = H, F, Cl, Br, and I) have been examined by means of ab initio molecular orbital theory at the second-order level of Moller-Plesset perturbation correction. It is found that the hydrogen bond O…H-X is non-linear. The attraction between X and the H atoms in oxirane ring causes O…H-X bond bending. The hydrogen bond slighdy weakens the bond strength of C-O, and leads the bending and stretching mode of IR to shift to the red. The calculation results show that there is no evidence of a significant extent of proton transfer to give (CH2)2OH …X- in the isolated complexes.  相似文献   

4.
5.
Ab initio study of the transition-metal carbene cations   总被引:3,自引:0,他引:3  
The geometries and bonding characteristics of the first-row transition-metal carbene cations MCH_2~ were investigated by ab initio molecular orbital theory (HF/LANL2DZ). All of MCH_2~ are coplanar. In the closed shell structures the C bonds to M with double bonds; while in the open shell structures the partial double bonds are formed, because one of the σ and π orbitals is singly occupied. It is mainly the π-type overlap between the 2p_x orbital of C and 4p_x, 3d_(xz), orbitals of M~ that forms the π orbitals. The dissociation energies of C—M bond appear in periodic trend from Sc to Cu. Most of the calculated bond dissociation energies are close to the experimental ones.  相似文献   

6.
The present paper covers electronic structures and spectra of the bases and the base pairs of nucleic acids calculated by using the INDO/S method. For free bases we give the energy levels of ground states and transition energies of low-lying excited states and discuss the band characters. The results indicate that the calculated spectra are in good agreement with experimental values. On the other hand, our calculations for A-T and G-C pairs are very beneficial to understanding hydrogen bond properties of these pairs.  相似文献   

7.
Excited-state hydrogen-bonding dynamics of N-methylformamide (NMF) in water has been investigated by time-dependent density functional theory (TDDFT) method. The ground-state geometry optimizations were calculated by density functional theory (DFT) method, while the electronic transition energies and corresponding oscillation strengths of the low-lying electronically excited states of isolated NMF, water monomers and the hydrogen-bonded NMF-H 2 O were calculated by TDDFT method. According to Zhao's rule on the excited-state hydrogen bonding dynamics, our results demonstrate that the intermolecular hydrogen bond C=O···O-H is strengthened and weakened in different electronically excited states. The hydrogen bond strengthening and weakening in the electronically excited state plays an important role in the photophysics of NMF in solutions.  相似文献   

8.
The concept of resonance-assisted hydrogen bonds(RAHBs)highlights the synergistic interplay between theπ-resonance and hydrogen bonding interactions.This concept has been well-accepted in academia and is widely used in practice.However,it has been argued that the seemingly enhanced intramolecular hydrogen bonding(IMHB)in unsaturated compounds may simply be a result of the constraints imposed by theσ-skeleton framework.Thus,it is crucial to estimate the strength of IMHBs.In this work,we used two approaches to probe the resonance effect and estimate the strength of the IMHBs in the two exemplary cases of the enol forms of acetylacetone and o-hydroxyacetophenone.One approach is the block-localized wavefunction(BLW)method,which is a variant of the ab initio valence bond(VB)theory.Using this approach,it is possible to derive the geometries and energetics with resonance shut down.The other approach is Edmiston’s truncated localized molecular orbital(TLMO)technique,which monitors the energy changes by removing the delocalization tails from localized molecular orbitals.The integrated BLW and TLMO studies confirmed that the hydrogen bonding in these two molecules is indeed enhanced byπ-resonance,and that this enhancement is not a result ofσconstraints.  相似文献   

9.
Thiophene adsorption on the Rh(111) surfaces has been investigated by density functional theory.The results show that the adsorption at the hollow and bridge sites is the most stable.The molecular plane of the thiophene ring is distorted,the C=C bond is stretched to 1.448  and the C-C bond is shortened to 1.390.The C-H bonds tilt 22~42oaway from the surface.The calculated adsorption geometries are in reasonable agreement with population analysis and density of states.The thiophene molecule obtains 0.74 electrons,reflecting the interaction between the lone pair of sulfur and the d-orbitals of metal.The reaction paths and transition states for desulfurization of the molecule have been investigated.The bridge adsorption structure of thiophene leads to a thiol via an activated reaction with an energetic barrier of 0.30 eV.This second step is slightly difficult,and dissociation into a C4H4 fragment and a sulfur atom is possible,with an energetic barrier of 0.40 eV.  相似文献   

10.
The geometries and bonding characteristics of the complexes of the first-row transition-metal ions with CH, CH_2 and CH_3 were investigated by ab initio molecular orbital theory. MCH~ and MCH_2~ are linear and coplanar, re spectively. Both of them are with obvious treble or double bond characteristics, but these multiple bonds are mostly "im perfect". The calculated bond dissociation energies of C--M~ , C=M~ and C≡M~ are mostly close to the experi mental values, and appear in similar periodic trends from Sc to Zn.  相似文献   

11.
The density functional theory(DFT) and self-consistent periodic calculation were used to investigate the methanol adsorption on the Pt-Mo(111)/C surface.The adsorption energies,equilibrium geometries and vibration frequencies of CH3OH on nine types of sites on the Pt-Mo(111)/C surface were predicted and the favorite adsorption site for methanol is the top-Pt site.Both sites of valence and conduction bands of doped system have been broadened,which are favorable for electrons to transfer to the cavity.The possible decomposition pathway was investigated with transition state searching and the calculation results indicate that the O-H bond is first broken,and then the methanol decomposes into methoxy.The activation barrier of O-H bond breaking with Pt-Mo catalyst is only 104.8 kJ mol-1,showing that carbon supported Pt-Mo alloys have promoted the decomposition of methanol.Comparing with the adsorption energies of CH3OH on the Pt(111)/C surface and that of CO,the adsorption energies of CO are higher,and Pt(111)/C is liable to be oxidized and loses the activity,which suggests that the catalyst Pt-Mo(111)/C is in favor of decomposing methanol and has better anti-poisoning ability than Pt(111)/C.  相似文献   

12.
Thiophene adsorption on the(111) surfaces of Pd and Pt have been investigated by density functional theory.The results indicate that the adsorption at the hollow sites is the most stable.To our interest,the molecular plane of thiophene ring is distorted with C=C bond being elongated to 1.450  and C-C bond being shortened to 1.347 ,and the C-H bonds tilt 13.91~44.05o away from this plane.Furthermore,analysis on population and density of states verified the calculated adsorption geometries.Finally,charge analysis suggests that thiophene molecule is an electron acceptor,reflecting the interaction between the lone pair of sulfur and the d-orbitals of metal.  相似文献   

13.
MINDO/3 molecular orbital theory has been used to study the thermal rearrangements of HNCRCR'CO.The results obtained show that the activation energy of this rearrangement depends on the migrating group R and the group R'.  相似文献   

14.
The project aims to develop an integrated linear-scaling time-dependent density functional theory (TD-DFT) for studying low-lying excited states of luminescent molecular materials, especially those fluorescence and phosphorescence co-emitting systems. The central idea will be "from fragments to molecule" (FF2M). That is, the fragmental information will be employed to synthesize the molecular wave function, such that the locality (transferability) of the fragments (functional groups) is directly built into the algorithms. Both relativistic and spin-adapted open-shell TD-DFT will be considered. Use of the renormalized exciton method will also be made to further enhance the efficiency and accuracy of TD-DFT. Solvent effects are to be targeted with the fragment-based solvent model. It is expected that the integrated TD-DFT and program will be of great value in rational design of luminescent molecular materials.  相似文献   

15.
The ab initio method has been used to study the 1-3 H transfer reaction on formamidine substituted by halogen. The calculation results show that the substituted halogen has two effects on the 1-3 H transfer reaction: decreasing the activation energy and stabilizing the C=N double bond owing to the conjugative effect of p-π-p of products and transition states.  相似文献   

16.
Paired-permanent approach for VB theory is extensively developed. Canonical expansion of a paired-permanent is deduced. Furthermore, it is shown that a paired-permanent may be expressed in terms of the products of sub-paired-permanents of any given order and their corresponding minors. An ab initio spin-free valence bond program, called Xiamen, is implemented by using paired-permanent approach. Test calculation shows that Xiamen package is more efficient than some other programs based on the traditional VB algorithm, and it provides a new practical tool for quantum chemistry.  相似文献   

17.
An ab initio molecular orbital study was performed to determine the effects of anions and cations on the π-complexation of C2H4 on MX(M=Ag, Cu; X=F, Cl). The calculated results show the following order of adsorption strength: F->Cl- for anions; Cu >Ag for cations. The results can be explained by the detailed analysis of atomic charge, orbital energy and orbital population by using the natural bond orbital(NBO) theory: (1) anions with stronger electronegativity can attract more electrons from the s orbital of M, while at the same time it does not obviously weaken the d orbital occupation of M, thus the nearly vacant s orbital and the sufficiently filled d orbitals of M help with forming σ-donation and d-π* backdonation with the π orbital and the π* orbital of olefin, respectively; (2) a smaller energy gap of symmetry-adapted orbitals between olefin and a cation can favor the electron transfer, that is why Cu forms stronger adsorption with olefin than Ag does.  相似文献   

18.
The photochromic mechanism of 1-phenyl-3-methyl-4-(6-hydro-4-amino-5-sulfo-2,3- pyrazine)-pyrazole-5-one has been investigated using the density functional theory(DFT). The solvent effect is simulated using the polarizable continuum model(PCM) of the self-consistent reaction field theory. According to the crystal structure of the title compound, an intramolecular proton transfer mechanism from enol to keto form was proposed to interpret its photochromism. Bader's atom-in-molecule(AIM) theory is used to investigate the nature of hydrogen bonds and ring structures. Time-dependent density functional theory(TDDFT) calculation results show that the photochromic process from enol to keto form is reasonable. The conformation and molecular orbital analysis of enol and keto forms explain why only intramolecular proton transfer is possible. The results from analyzing the energy and dipole moments of enol form, transition state and keto form in the gas phase and in different solvents have been used to assess the stability of the title compound.  相似文献   

19.
The fixed-node quantum Monte Carlo (FNQMC)1,2 method has made it possible to calculate the electronic structure of relatively large molecular systems. These large systems range from positron complexes [NH2, Ps] with ~10 electrons to C20 isomers with 120 electrons, silicon crystal structures of 250 atoms and 1000 valence electrons. In the practical calculation for FNQMC method, in general, a minimal basis set of Slater-type atomic orbital (STO) and Jastrow functions are taken to cons…  相似文献   

20.
A modern valence bond approach, namely bonded tableau unitary group approach, isapplied to ozone, sulphur dioxide and nitrite systems, respectively. It is shown that the biradicalstructure is in the primary position in descrbing the molecular structure of ozone. Thus threeinstead of two resonance structures are needed to describe the ground state of ozone. The caseof sulphur dioxide is similar to that of ozone. It is found that, however, for the nitrite anion fourresonance structures are needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号