首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Toward achieving selective catalytic reduction of NO x by hydrocarbons at low temperatures (especially lower than 200 °C), C2H2 selective reduction of NO x was explored on H-mordenite (H-MOR) catalysts in dielectric barrier discharge (DBD) plasma. This work reported significant synergistic effects of DBD plasmas and H-MOR catalysts for C2H2 selective reduction of NO x at low temperatures (100–200 °C ) and across a wide range of O2 content (0–15%). At 100 °C, NO x conversions were 3.3, 11.6 and 66.7% for the plasma alone, catalyst alone and in-plasma catalysis (IPC) cases (with a reactant gas mixture of 500 ppm NO, 500 ppm C2H2, 10% O2 in N2, GHSV = 12,000 h−1 and input energy density of 125 J L 1), respectively. At 200 °C, NO x conversions were 3.8, 54.0 and 91.4% for the above three cases, respectively. Also, strong signals of hydrogen cyanide (HCN) byproduct were observed in the catalyst alone system by an on-line mass spectrometer. By contrast, almost no HCN was detected in the IPC system.  相似文献   

2.
Ag/Al2O3 is a promising catalyst for the selective catalytic reduction (SCR) by hydrocarbons (HC) of NO x in both laboratory and diesel engine bench tests. New developments of the HC-SCR of NO x over a Ag/Al2O3 catalyst are reviewed, including the efficiencies and sulfur tolerances of different Ag/Al2O3-reductant systems for the SCR of NO x ; the low-temperature activity improvement of H2-assisted HC-SCR of NO x over Ag/Al2O3; and the application of a Ag/Al2O3-ethanol SCR system with a heavy-duty diesel engine. The discussions are focused on the reaction mechanisms of different Ag/Al2O3-reductant systems and H2-assisted HC-SCR of NO x over Ag/Al2O3. A SO2-resistant surface structure in situ synthesized on Ag/Al2O3 by using ethanol as a reductant is proposed based on the study of the sulfate formation. These results provide new insight into the design of a high-efficiency NO x reduction system. The diesel engine bench test results showed that a Ag/Al2O3-ethanol system is promising for catalytic cleaning of NO x in diesel exhaust.  相似文献   

3.
Energetic materials such as a mixture of guanidine nitrate (GN)/basic copper nitrate (BCN) are used as gas generators in automotive airbag systems. However, at the time of the airbag inflation, the gas generators release toxic combustion gases such as CO, NH3, and NOx. In this study, we investigated the combustion and thermal decomposition behaviors of GN/BCN mixture, focusing primarily on their exhaust gas composition. As a result, when the exhaust gas of the combustion under constant pressure in an inert gas stream was analyzed using a detection tube, the amount of NOx (mainly NO) yielded greater decrease with increasing atmospheric pressure as compared to the amounts of CO and NH3. Thus, provided GN/BCN is ignited in a closed container, a large amount of NOx is presumed to have been released during the initial stage of combustion, which yielded comparatively low pressure. Results of the thermogravimetry–differential scanning calorimetry–Fourier transform infrared spectroscopy (TG/DSC/FTIR) indicated that the GN/BCN mixture caused endothermic decomposition at 170 °C and exothermic decomposition at 208 °C, which was accompanied by 66% mass loss. The decomposition gases, CO2, N2O, and H2O, were detected via FTIR spectrum. Because N2O was not detected in the combustion gas, it was suggested that the detected N2O was generated at a low temperature and decomposed in high-temperature combustion.  相似文献   

4.
A pilot-scale pulse corona induced plasma chemical process (PPCP) reactor for controlling gas-phase dioxins and NO x simultaneously is installed in a garbage incineration plant. The flow rate of the sampled flue gas is 5,000 Nm3/h (N: standard state) in maximum at the PPCP reactor, which consists of 22 wire-cylinder electrodes and is energized by a 50 kW nanosecond pulse high voltage generator. With an applied plasma energy density of 2.9–6.1 Wh/Nm3, the decomposition efficiency for dioxins is 75–84% based on TEQ (toxic equivalents); the conversion efficiency of NO to NO2 is ~93% at maximum. The flue gas treated by the PPCP reactor is introduced at a rate of 50 Nm3/h to a wet-type chemical reactor, which uses an aqueous solution of sodium sulfite (Na2SO3). More than 90% of NO x is reduced to nitrogen, with negligible byproducts such as NO2 or NO3 ions left in the solution.  相似文献   

5.
Thermolysis of double complex salt [Pd(NH3)4][AuCl4]2 has been studied in helium atmosphere from ambient to 350 °C. The XAFS of Pd K and Au L3 edges and thermogravimetry measurements have been carried out to characterize the intermediates and the final product. In the temperature range 115–160 °C the complex is decomposed to form Pd(NH3)2Cl2 and AuCl4−x N x species with x ranging from 2 to 3. Subsequent heating of the intermediate up to 300 °C leads to the total loss of NH3. The Au–Cl and Au–Au bonds form the local environment of Au at the stage of decomposition while only four chlorine atoms are around Pd. At the temperature of 330 °C the Au and Pd nanoparticles as well as residues of palladium chloride are detected. The final product consists of separated Au and Pd nanoparticles.  相似文献   

6.
Ferroelectric thin films of Nd and Mn co-doped bismuth titanate, Bi3.15Nd0.85Ti3−x Mn x O12 (BNTM) (x = 0–0.1), were fabricated on Pt/TiO2/SiO2/Si(100) substrates by a sol–gel technique. The BNTM films had a polycrystalline perovskite structure and uniform and dense surface morphologies. A lattice distortion was observed in the BNTM films due to Mn ion doping. The ferroelectric measurement of the films indicated that the values of coercive field (E c ) decreased gradually with the increase of the Mn content (x), however, the remanent polarization (P r ) increase firstly and then decrease with the increase of x. The sample with x = 0.05 had optimum electrical properties and a maximum 2P r value. The 2P r and 2E c values of the film at a maximum applied electric field of 400 kV/cm were 38.3 μC/cm2 and 180 kV/cm, respectively. Moreover, this BNTM capacitors did not show fatigue behaviors after 1.0 × 1010 switching cycles at a frequency of 1 MHz, suggesting a fatigue-free character. The main reason for the increase of the 2P r and the decrease of the 2E c might be attributed to the lattice distortion in BNTM films due to Mn ion doping.  相似文献   

7.
The effect of fluorine doping on the electrochemical performance of LiFePO4/C cathode material is investigated. The stoichiometric proportion of LiFe(PO4)1−x F3x /C (x = 0.01, 0.05, 0.1, 0.2) materials was synthesized by a solid-state carbothermal reduction route at 650 °C using NH4F as dopant. X-ray diffraction, scanning electron microscope, energy-dispersive X-ray, and X-ray photoelectron spectroscopy analyses demonstrate that fluorine can be incorporated into LiFePO4/C without altering the olivine structure, but slightly changing the lattice parameters and having little effect on the particle sizes. However, heavy fluorine doping can bring in impurities. Fluorine doping in LiFePO4/C results in good reversible capacity and rate capability. LiFe(PO4)0.95 F0.15/C exhibits highest initial capacity and best rate performance. Its discharge capacities at 0.1 and 5 C rates are 156.1 and 119.1 mAh g−1, respectively. LiFe(PO4)0.95 F0.15/C also presents an obviously better cycle life than the other samples. We attribute the improvement of the electrochemical performance to the smaller charge transfer resistance (R ct) and influence of fluorine on the PO43− polyanion in LiFePO4/C.  相似文献   

8.
The efficiency of TiO2 (Degussa P-25) modified with an alkaline admixture (urea, BaO), sulfuric acid, or platinum in the photocatalytic oxidation of NO (50 ppm) with a flowing 7% O2 + N2 mixture under UV irradiation in a flow reactor at room temperature and atmospheric pressure is reported. Because of the progressive blocking of active sites of the photocatalyst by the reaction products (NO2, NO3), it is impossible to realize prolonged continuous removal of NO x (NO + NO2) from air without catalyst regeneration at elevated temperatures. The efficiency of the photocatalysts is characterized by specific photoadsorption capacity (SPC) calculated from the total amount of NO x adsorbed during 2-h-long irradiation. Modification of TiO2 with 5% BaO or 5% urea raises the SPC of the catalyst by a factor of 2–3. Presumably, this promoting effect is due to the basic properties of these dopants, which readily sorb NO2 and NO3. A considerable favorable effect on SPC is also attained by adding 0.5% Pt to (5% BaO)/TiO2. The SPC of the (0.5% Pt)/TiO2 catalyst depends on the state of the platinum. The samples calcined in air at 500°C, which contain Pt+ and Pt2+, have an approximately 2 times higher SPC than unpromoted TiO2 and ensure a much larger NO2/NO ratio at the reactor outlet. Conversely, the samples reduced in an H2 atmosphere at 200°C, whose platinum is in the Pt0 state, show a lower SPC than the initial TiO2 and cause no significant change in the NO2/NO ratio.  相似文献   

9.
Phase relations in the Zn2V2O7-Cu2V2O7 system were studied by high-temperature X-ray diffraction and differential thermal analysis. The major phase constituents of the system are solid solutions based on Zn2V2O7 and Cu2V2O7 polymorphs and their coexistence regions. The generation of α-Zn2 − 2x Cu2x V2O7 solid solution, where 0 ≤ x ≤ 0.30, leaves almost unchanged the stabilization temperature of the high-temperature zinc pyrovanadate phase. The α-Cu2 − 2x Zn2x V2O7 homogeneity range is 5 mol % Zn2V2O7. In the range 0.050 ≤ x ≤ 0.09 from 20 to ∼ 620°C, there is the two-phase field of α-Cu2V2O7 and β-Cu2V2O7 base solid solutions. At still higher temperatures, β-Zn2 − 2x Cu2x V2O7 and α-Cu2 − 2x Zn2x V2O7 coexist in the mixed-phase region. β-Zn2 − 2x Cu2x V2O7 solid solution, where 0 ≤ x ≤ 0.30, exists above 610 ± 5°C. The extent of the β′-Cu2V2O7-base solid solution is 9 to 65 mol % Zn2V2O7 at 615 ± 5°C, expanding to 0 mol % Zn2V2O7 with rising temperature. Original Russian Text ¢ T.I. Krasnenko, M.V. Rotermel’, S.A. Petrova, R.G. Zakharov, O.V. Sivtsova, A.N. Chvanova, 2008, published in Zhurnal Neorganicheskoi Khimii, 2008, Vol. 53, No. 10, pp. 1755–1762.  相似文献   

10.
The main aim of this work was to synthesize the magnesium orthostannate doped by terbium cations and tested whether these materials can be used for colouring of the different materials, e.g. organic binder and ceramic glazes. Initial composition of pigments was counted according the general formula 2MgO(1 − x)SnO2xTbO2, where values of x varied from 0.1 to 0.5 in 0.1 steps. The simultaneous TG/DTA measurements of mixture containing tin oxide, magnesium carbonate hydroxide and terbium oxide showed that the formation of a new compound started at temperature 1,029 °C, but single-phase system was not prepared. Granulometric compositions of samples that were prepared by calcining at temperatures 1,300–1,400 °C are characterized by values of median (d 50) in range 4–8 μm. The calcining temperature 1,500 °C caused the increase of the particle sizes at around 12 μm. The composition of sample 2MgO–1.5SnO2–0.5TbO2 and heating temperature 1,500 °C are the most suitable conditions for preparation of colourfully interesting pigment that can be recommended also for colouring of ceramic glazes. Especially, for colouring of decorative lead containing glaze G 07091 containing 5 wt% of PbO and 8 wt% of Al2O3.  相似文献   

11.
New environmentally inorganic pigments based on Bi2O3 doped by metal ions, such as Zr4+ and Dy3+ have been developed and characterized using the methods thermal analysis, X-ray powder diffraction, and spectral reflectance data. The compounds having formula Bi2−x Dy x/2Zr3x/8O3 (x = 0.2, 0.6, 1.0, and 1.2) were prepared by the solid state reaction. Methods of thermal analysis were used for determination of the temperature region of the pigment formation and thermal stability of compounds. The incorporation of doped ions in Bi2O3 changes the color from yellow to orange and also contributes to a growth of their thermal stability. This property gives a direction for coloring ceramic glazes.  相似文献   

12.
Corn stover silage is an attractive raw material for the production of biofuels and chemicals due to its high content of carbohydrates and easy degradability. The effects of Fe(NO3)3 pretreatment conditions on sugar yields were investigated for corn stover silage. In addition, a combined severity factor was used to evaluate the effect of pretreatment conditions on the concentration of total sugars and inhibitors. Optimum pretreatment condition was obtained at 150 °C for 10 min with 0.05 M Fe(NO3)3, at which the yields of soluble xylose and glucose in liquid achieved 91.80% of initial xylose, 96.74% of initial arabinose and 19.09% of initial glucose, respectively, meanwhile, 91.84% of initial xylose, 98.24% of initial arabinose, and 19.91% of initial glucose were removed. In addition, a severity analysis showed that the maximum sugar concentration of 33.48 g/l was achieved at combined severity parameter value of 0.62, while the inhibitor concentration was only 0.03 g/l. Fe(NO3)3 is an effective catalyst to enhance hemicellulose hydrolysis in corn stover silage, the yields of monomeric xylose in the liquid fraction reached as high as 91.06% of initial xylose and 96.22% of initial arabinose, respectively.  相似文献   

13.
Solid-phase interactions in the V2O5-Ta2O5-MoO3 system were studied. The formation of com- pounds TaVO5 and VTa9O25 in the V2O5-Ta2O5 binary system was verified. Tetragonal VTa9O25-base solid solutions of the general formula Ta5 + 4x V5 − 4x O25 (x = 0.25–1) and TaVO5-base solid solutions of the general formula Ta x Mo1 − x V2 − x O8 − 3x (x = 0.625–1) were found to form. Subsolidus phase equilibria in the V2O5-Ta2O5-MoO3 were determined.  相似文献   

14.
Perovskite Bi1−x Y x FeO3 (0.0 ≤ x ≤ 0.1) oxides were prepared by a citrate-gel method. The crystal structure examined by X-ray powder diffraction indicates that the samples were single-phase and crystallize in a rhombohedral (space group, R-3c no. 161) structure. The structural phase transition from rhombohedral to orthorhombic phase was observed at x = 0.10. Increase in magnetization was observed as a result of Y doping. The optical band-gap of (Bi, Y)FeO3 materials were determined. The observed increase in magnetization and low band-gap of (Bi, Y)FeO3 ceramics position them for potential magenotoelectric and photocatalytic applications, respectively.  相似文献   

15.
Summary Specific heats on the single crystals of Sr2Nb2O7, Sr2Ta2O7 and (Sr1-xBax)2Nb2O7 were measured in a wide temperature range of 2-600 K. Heat anomalies of a λ-type were observed at the incommensurate phase transition of TINC (=495 K) on Sr2Nb2O7 and at the super-lattice phase transition of TSL (=443 K) on Sr2Ta2O7; the transition enthalpies and the transition entropies were estimated. Furthermore, a small heat anomaly was observed at the low temperature ferroelectric phase transition of TLOW (=95 K) on Sr2Nb2O7. The transition temperature TLOW decreases with increasing Ba content x and it vanishes for samples of x>2%.  相似文献   

16.
Recently authors demonstrated direct dissolution of g-level PHWR UO2 fuel pellet fragments and in situ extraction by TBP-HNO3 and TiAP-HNO3 solutions at atmospheric pressures. Extending the work, similar studies were performed on intact unirradiated PHWR UO2 fuel pellets (~15 g U) with varying compositions of organic solvate of tri-n-butyl phosphate (TBP). It was observed that extent of dissolution was a strong function of organic solution composition TBP·(HNO3) x (H2O) y . Complete dissolution of intact UO2 pellet in a reasonable time was observed only in case of a particular solvate composition.  相似文献   

17.
Dissolution of vanadium in anhydrous HNO3 followed by exposure of the solution in a dessicator over P2O5 gave liquid vanadyl trinitrate (I). The X-ray diffraction analysis of I was carried out for a single crystal grown on cooling the liquid in a sealed capillary. The structure is composed of VO(NO)3 molecules in which the V atom has an unusually high C.N. 7; it coordinates the terminal O atom and three bidentate nitrate groups to form a distorted pentagonal bipyramid as the coordination polyhedron with the terminal O atom occupying one axial vertex. Using the GAMESS program package, ab initio calculation of the structure of VO (NO3)3 in the liquid phase was carried out. It was shown that in all three physical states, vanadyl trinitrate retains its molecular structure almost invariable. Toluene and naphthalene nitration using I and (NO2)[Fe(NO3)4], NO[Cu(NO3)3], (NO)3/4(NO2)1/4[Zr(NO3)5], and MoO2(NO3)2 proceeds at high rates at low temperatures to give an unusually high para-nitrotoluene percentage in the products as compared with the ortho-isomer. The activity of the studied compounds in the nitration of naphthalene decreases in the series VO(NO3)3 > (NO)3/4(NO2)1/4[Zr(NO3)5] > MoO2(NO3)2.  相似文献   

18.
It has been demonstrated by quantitative spectrokinetic measurements that, on the surface of zirconia stabilized as a tetragonal phase, the rate-limiting step of the selective catalytic reduction of nitrogen oxides (SCR of NO x ) with propylene is the interaction of surface nitrates with C3H6 yielding organic nitro compounds. It is hypothesized that propylene reacts not with the nitrates themselves but with the activated complex NO2 ads whose structure is intermediate between the structures of the monodentate NO3 ? and NO2 species. Deep C3H6 oxidation exerts an adverse effect on the rate of the SCR of NO x with propylene, and the interaction between O2 and NO, which yields NO2 and NO3 ? stimulates further nitrogen reduction to N2. The effect of the reaction between oxygen and O2N?C n H m on the NO x reduction rate is variable and is determined by the C3H6/NO x ratio. A generalized scheme of the SCR of NO x with propylene on the surface of ZrO2 partially stabilized as a tetragonal phase has been developed by comparing experimental data of this study and data available from the literature.  相似文献   

19.
The formation of Barium monotungstate (BaWO4) particles in equimolar powder mixtures of BaCO3 and WO3 was examined under isothermal and non-isothermal conditions upon heating in air at 25–1200 °C, using thermogravimetry. Concurrence of the observed mass loss (due to the release of CO2) to the occurrence of the formation reaction was evidenced. Accordingly, the extent of reaction (x) was determined as a function of time (t) or temperature (T). The xt and xT data thus obtained were processed using well established mathematical apparatus and methods, in order to characterize nature of reaction rate-determining step, and derive isothermal and non-isothermal kinetic parameters. Moreover, the reaction mixture quenched at various temperatures (600–1,000 °C) in the reaction course was analyzed by various spectroscopic and microscopic techniques, for material characterization. The results obtained indicated that the reaction rate may be controlled by unidirectional diffusion of WO3 species across the product layer (BaWO4), which was implied to form on the barium carbonate particles. The isothermally determined activation energy (118–125 kJ/mol) was found to be more credible than that (245 kJ/mol) determined non-isothermally.  相似文献   

20.
Already commercialized and some of the most promising technologies of nitrogen oxide reduction in automotive diesel exhaust are compared. The Boreskov Institute of Catalysis (Siberian Branch, Russian Academy of Sciences) is developing an advanced method for the selective catalytic reduction of NO x with synthesis gas produced on board by the catalytic conversion of diesel fuel. The activity of the Ag/Al2O3 catalytic system in NO x reduction by H2 + CO admixtures is studied for both a model composition of the exhaust gas and under real diesel operation conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号