首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 201 毫秒
1.
Different Mechanisms of the Cyclisation of Aminofluorosilanes The reaction of aminofluorosilanes of the type RR′SiFNHR″ (R = H, F, CH3, C2H3, C6H5, C(CH3)3; R′ = C(CH3)3, NiC3H7Si(CH3)3, NC(CH3)3Si(CH3)3, N[Si(CH3)3]2; R″ = iC3H7, C(CH3)3, C6H5) with butyllithium depends on the steric influence of the ligands. With increasing size of the ligands the reaction takes its pathway from the substitution under LiF elimination via dimerisation with additional elimination of butan to the C? H cleavage and cyclisation via a methylen group. A further increase of the size of the substituted groups leads through the intermediate formation of a silicenium-ylid to ring closure reactions. These occure by migration of a methanid ion leading to intermolecular nucleophilic substitution. The isolated acyclic and heterocyclic compounds are described and the mass and 1H-n.m.r. spectra are reported.  相似文献   

2.
The SO2 insertion into (CH3)4Sn and (C2H5)4Sn is essentially facilitated in the presence of 2,2′-bipyridine according to eqns. (1) and (3). The corresponding bis(sulfinates) R2Sn(O2SR)2 (R = CH3, C2H5) are obtained in both cases at ?30°; their formation proceeds via the monosulfinates R3SnO2SR (R = CH3, C2H5) according to eqns. (2) and (4). By this way (CH3)2Sn(O2SCH3)2 could be prepared for the first time as a result of the SO2 insertion into (CH3)4Sn.  相似文献   

3.
Preparation of New Alkylaminofluorosilanes Aminofluorosilanes of the composition RSiF2NR′R″ (R = H, CH3, C2H3, C6H5; R′ = Si(CH3)3; R″ = C(CH3)3; R′ = R″ = i-C3H7), as well as C6H5SiF2N[C(CH3)2CH2]2CH2 are obtained by the reaction of fluorosilanes with the lithium salts of the corresponding amines in a molar ratio 1:1. The further reaction of these compounds with the lithium salts of alkylamines and anilin leads to the formation of the diaminofluorosilanes RSiFNR′R″NHR? (R? = C(CH3)3, i-C3H7, C6H5). The 1H, 19F, 29Si n.m.r. and mass spectra of the above mentioned compounds are reported.  相似文献   

4.
Compounds of the composition RR′SiFNR″Si(CH3)3 (R = H, F, CH3, C2H5, C3H7, C2H3, C6H5, C(CH3)3; R = F, CH3, C6H5; R″ = CH3, C(CH3)3, Si(CH3)3) are obtained by the reaction of silicontetrafluoride or organo-substituted silicon-fluorides with the lithium salts of alkylsilylamines in a molar ratio of 11. The disubstituted compounds RSiF(NR′Si(CH3)3)2 (R = H, F, CH3, C2H3, C6H5; R′ = CH3, C(CH3)3) result when the reactants are in a 12 molar-ratio. Likewise the unsymmetrical siliconfluorsilylamines of the formulae F2Si(NRSi(CH3)3) (NR′Si(CH3)3) (R = CH3, R′ = C(CH3)3), as well as the trisubstituted compounds FSi(NCH3Si(CH3)3)3 and FSi(NCH3Si(CH3)3)2(N(Si(CH3)3)2) were made. By reacting phenyltrifluorsilane with dialkylamines (12) C6H5SiF2NR2(R = CH3, C2H5) was obtained. The IR-, mass-, 1H and 19F NMR spectra of the above-mentioned compounds are reported.  相似文献   

5.
The [Fe443-C(CH3)C(R)C(R′)(μ-CO)2(CO)9] cluster anions have been obtained by the reaction of the Fe43-CCH3)(CO)12 anion with RCCR alkynes in boiling 3-pentanone. In the cases in which R = R′ = C6H5 or CH3, and R = H, R′ = C6H5 or t-Bu, only one isomer has been detected. In the case in which R = CH3, and R′ = C6H5, two isomers with the C(CH3)C(C6H5)C(CH3) and C(CH3)C(CH3)C(C6H5) fragments have been identified.  相似文献   

6.
Diorganogermaniumdisulfinic esters of the type R2Ge(O2SR′)2 (R = CH3, R′ = CH3, C6H5, p-CH3C6H4; R = C6H5, R′ = CH3, p-CH3C6H4) which are sensitive to hydrolysis are obtained by reaction of the corresponding diorganogermanium dichlorides with anhydrous silver sulfinates. The newly prepared compounds are thoroughly investigated on the basis of their 1H NMR, mass, IR and Raman spectra. The methyl ester (CH3)2Ge(O2SCH3)2 is compared with the already known sulfinato complex of tin with the same formal composition.  相似文献   

7.
Preparation and Properties of Diorganyl-bis(seleninato-O,O′) Complexes of Lead and Tin The colourless, thermically stable diorganyl-bis(seleninato-O , O ′) complexes of lead and tin R2E(O2SeR′)2[E = Pb (1) , Sn (2) ] are obtained by reaction of diorganyllead- and -tindichlorides R2ECl2 (R = C6H5, CH3, C2H5, n-C4H9) with different sodiumseleninates R′SeO2Na (R′ = C6H5, CH3, C2H5) at 20°C. On the basis of their i.r., Raman, and Mößbauer spectra and their slightly solubility in all organic solvents a polymeric structure is supposed in which each two R′SeO2 - ligands are linking two lead and tin atoms respectively (c.n. = 6) intermolecular (seleninato-O , O ′). The organic residues are in trans-position.  相似文献   

8.
Thirty triorganotin(IV) derivatives of the type R3Sn(R′COCHCOCH2COR″) and [R3Sn]2 (R′COCHCOCHCOR″) (where R = CH3, C2H5, nC3H7, nC4H9 and C6H5 and R′ = R″ = CH3, C6H5 or R′ = C6H5, R″ = CH3) have been synthesised by the interaction of R3SnCl with mono- or disodium salt of 2, 4, 6-heptanetrione, 1-phenyl-1, 3, 5-hexanetrione and 1, 5-diphenyl-1, 3, 5-pentanetrione in 1:1 and 2:1 molar ratios, respectively. The complexes have been examined by their molecular weight, IR, PMR and elemental analyses and their tentative structures assigned. Both “Z” and “E” forms have been identified in the 1:1 complexes in equilibrium with the enol form containing five coordinate tin. The 2:1 derivatives contain one five- and other four coordinated tin(IV) except the phenyl analogue where both the tins are five coordinated.  相似文献   

9.
Synthesis and Structural Studies of Aluminum Dialkylamines and Dialkylamides: N‐Chirality of (CH3)3AlNHRR′ and cis‐trans ‐Isomerism at X2AlNRR′ (X = CH3, Cl, H) Aluminum dialkylamines and dialkylamides were prepared from Al(CH3)3 and NH(CH3)R′ (R′: –C2H5, –tC4H9) and characterized by elemental analyses, 1H‐, 13C‐, and 27Al‐NMR spectroscopy. The crystal structures of [(CH3)2AlN(CH3)(–tC4H9)]2 ( IV ), [Cl2AlN(CH3)(C2H5)]2 ( V ), and [H2AlN(CH3)(C2H5)] ( VI‐trans and VI‐cis ) are discussed.  相似文献   

10.
13C, 29Si and 119Sn NMR data (chemical shifts and coupling constants) are reported for 1,3-diynes RCCCCR′ (R = R′ = H, t-C4H9, Si(CH3)3, Sn(CH3)3; R = Si(CH3)3, R′ = Sn(CH3)3). The data are in agreement with an increased polarity of the SnC bond in the 1,3-diynes as compared with alkynylstannanes.  相似文献   

11.
About Tribenzyltin- and Tribenzyltitaniumcyclopentadienyl The organocerium(III) compound Na(THF)[(π-C5H5)3Ce(σ-C5H5)] ( I ) reacts with (C6H5CH2)3SnCl and (C6H5CH2)3TiCl after a SN-reaction under separation of Nacl and (C5H5)3Ce to tribenzyltin- resp.-titaniumcyclopentadienyl (C6H5CH2)3MC5H5 [M = Sn, ( II ); Ti, ( III )]. A special characterization of II and III was carried out by their elementary analysis, I.R. spectroscopy and 1H, 13C, and 119Sn N.M.R. spectroscopy. These results allow the statement that II and III are better to be described by the formulae (C6H5CH2)3Sn(σ-C5H5) and (C6H5CH2)3Ti(π-C5H5), respectively.  相似文献   

12.
A series of triphenylarsenic(V) derivatives Ph3As(OPri)[SC6H4N:C(R)CH2C(O)R′] have been synthesized by the reactions of triphenylarsenic(V)‐ isoproproxide, Ph3As(OPri)2 with the corresponding 2,2‐disubstituted benzothiazolines of the type (where R = CH3, R′ = CH3( 1 ); R = CH3, R′ = C6H5( 2 ); R = CH3, R′ = 4‐CH3C6H4( 3 ); R = CH3, R′ = 4‐ClC6H4( 4 ); and R = CF3, R′ = C6H5( 5 )) in equimolar ratio in refluxing benzene solution. Molecular weight measurements of these complexes show their monomeric nature in solution. Characterization of these compounds using elemental analyses, molecular weight measurements, and spectral studies (IR as well as NMR (1H and 13C)) shows the monofunctional bidentate nature of the ligands and a hexacoordination around the central arsenic atom in these organoarsenic(V) derivatives. © 2007 Wiley Periodicals, Inc. Heteroatom Chem 18:76–80, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20233  相似文献   

13.
Bis(triorganometal) 1,2-dithiolates (R3M)2S2R′ [(HS)2R′ = C7H8S2 for toluene-dithiol-3,4 (H2TDT); M = Sn, Pb; R = Ph; or (HS)2R′ = C10H14S2 for 1,2-dimethyl-4,5-bis(mercaptomethyl)benzene (H2DBB); M = Sn, R = CH3, C6H5; M = Pb, R = C6H5], diorganometal 1,2-dithiolates R2MS2R′ [(HS)2R′ = C6H6S2 for 1,2-dimercaptobenzene (H2DMB); M = Pb, R = CH3, C2H5, C6H5; or (HS)2R′ = H2TDT; M = Sn, R = CH3, C6H5; M = Pb, R = C6H5; or (HS)2R′ = H2DBB; M = Sn, R = CH3, C6H5; M = Pb, R = CH3, C2H2, C6H5; or (HS)2R′ = C8H6N2S2 for 2,3-dimercaptoquinoxaline (H2QDT); M = Pb, R = C6H5] and some lead(IV) and lead(II) dithiolates Pb(S2R′)n [(HS)2R′ = H2DMB, n = 2; (HS)2R′ = H2TDT, n = 2; (HS)2R′ = H2DBB, n = 1 or 2] have been prepared. Vibrational, 1H NMR, and Mössbauer spectroscopic data are consistent with pentacoordination of tin in R2SnTDT and with tetracoordination of tin in R2SnS2R′ and (R3Sn)2S2R′ in the solid state. The soluble compounds are monomeric in solution. Coupling constants for the methyltin compounds indicate tetracoordination in solution.  相似文献   

14.
The reaction of bis(trimethylsilyl)aminofluorsilanes, (Me3Si)2NSiF2R (R = CH3 or F), with sodium alcoholates or sodium phenylate yields under elimination of NaF alkoxy- and aryloxy-aminofluorosilanes of the composition (Me3Si)2NSiF(R)OR′(R′ = CH3, C2H5, C3H7, C6H5). A disiloxane is formed by thermal elimination of diethyl ether from bis(trimethylsilyl)aminomethylfluoroethoxysilane. The IR, mass, 1H and 19F NMR spectra of the above-mentioned compounds are reported. ab]Die Reaktion von Bis(trimethylsilyl)-aminofluorsilanen des Typs (Me3Si)2NSiF2R (R = F, CH3) mit Natriumalkoholaten und Natriumphenolat führt unter NaF-Abspaltung zu Alkyl- und Aryloxyaminofluorsilanen der Zusammensetzung: (Me3Si)2NSiF(R)OR′ (R′ = CH3, C2H7, C6H5, C6H5). Ein Disiloxan könnte durch die thermische Eliminierung von Diäthyläther aus Bis(trimethylsilyl)aminomethyl-fluor-äthoxy-silylarnin erhalten werden.Die IR-, Massen-, 1H- und 19F-NMR-Spektren der dargestellten Verbindungen werden mitgeteilt.  相似文献   

15.
A set of pentacoordinated dimethyltin(IV) complexes of flexible N‐protected amino acids and fluorinated β‐diketone/β‐diketones was screened for their antibacterial activity against Pseudomonas aeruginosa , Staphylococcus aureus and Streptomyces griseus . These pentacoordinated complexes of the type Me2SnAB (where : R = CH(CH3)C2H5, A1H; CH2CH(CH3)2, A2H; CH(CH3)2, A3H; CH2C6H5, A4H; and BH = R'C(O)CH2C(O)R″: R′ = C6H5, R″ = CF3, B1H; R′ = R″ = CH3, B2H; R′ = C6H5, R″ = CH3, B3H; R′ = R″ = C6H5, B4H) were generated by the reactions of dimethyltin(IV) dichloride with sodium salts of flexible N‐protected amino acids (ANa) and fluorinated β‐diketone/β‐diketones (BNa) in 1:1:1 molar ratio in refluxing dry benzene solution. Plausible structures of these complexes were elucidated on the basis of physicochemical and spectral studies. 119Sn NMR spectral data revealed the presence of pentacoordinated tin centres in these dimethyltin(IV) complexes.  相似文献   

16.
The complexes Cr(CO)5(R′SNR2) [R′ = CH3; NR2 = N(CH3)2, N(C4H8)O. R′ = C6H5; NR2 = N(CH3)2, N(C4H4)O, N(CH2? C6H5)2, N(C6H11)2] have been prepared by reaction of the sulfenamides with Cr(CO)5 · THF and characterized by analytical and spectroscopic methods. The IR, 1H-NMR, UV-VIS, and mass spectra of the complexes support the coordination of the sulfenamide via the sulfur atom. π-acceptor abilities of sulfenamides in the prepared coordination compounds, determined from IR and UV-VIS data, were compared with those of other divalent sulfur conpounds.  相似文献   

17.
We investigated the 1H and 119Sn NMR spectra of (CH3)4-nSn(OR)n (n = 1, 2, 3; R = CH3, C2H5) compounds. The different NMR parameters could not be interpreted with the aid of normal substitution effects based upon electronegativity considerations of the substituents. However, structural changes caused by polymerization could provide a rational explanation of the special NMR behaviour of these compounds.  相似文献   

18.
On chalcogenolates. 138. Studies on Dialkyl Esters of Chalcogenocarbonic A cids. 1. O, Se-Dialkyl Monoselenocarbonates The esters RSe? CO? OR′ with R = R′ = C2H5 as well as with R = nC3H7 and R′ = CH3, C2H5 have been prepared by reaction of sodium alkane selenolates with alkyl esters of chloroformic acid. The compounds have been characterized by means of electron absorption, infrared, nuclear magnetic resonance (1H, 13C, and 77Se), and mass spectra.  相似文献   

19.
Inhaltsübersicht. Triorganoantimon- und Triorganobismutdicarboxylate R3M[O2C(CH2)n-2-C4H3X]2 (M = Sb, R = CH3, C6H11, C6H5, 4-CH3OC6H4; M = Bi, R = C6H5, 4-CH3C6H4; n = 0, X = O, S, NH, NCH3. M = Sb, R = CH3, C6H5; M = Bi, R = C6H5; n = 1, X = O, S. M = Sb, R = C6H11, n = 1, X = S; R = 4-FC6H4, n = 0, X = O, S, NCH3; R = 2,4,6-(CH3)3C6H2, n = 0, X = O, S, NH) wurden durch Reaktionen von R3Sb(OH)2 (R = CH3, C6H11, 2,4,6-(CH3)3C6H2), R3SbO (R = C6H5, 4-CH3OC6H4, 4-FC6H4) bzw. R3BiCO3 mit den entsprechenden fünfgliedrigen heterocyclischen Carbonsäuren 2-C4H3X(CH2)nCOOH dargestellt. Auf der Basis schwingungsspektroskopischer Daten wird für alle Verbindungen eine trigonal bipyramidale Umgebung vom M (zwei O-Atome von einzähnigen Carboxylatliganden in den apikalen, drei C-Atome von R in den äquatorialen Positionen) vorgeschlagen, ferner eine schwache Wechselwirkung zwischen O(=C) jeder Carboxylatgruppe und M. Die Kristallstrukturbestimmung von (C6H5)3Sb(O2C–2-C4H3S)3 stützt diesen Vorschlag. Die Verbindung kristallisiert triklin [Raumgruppe P$1; a = 891,8(14), b = 1058,2(12), c = 1435,6(9) pm, α = 68,53(8), β = 85,47(9), γ = 85,99(11)°; Z = 2; d(ber.) = 1,607 Mg m–3; V(Zelle) = 1255,6 Å3; Strukturbestimmung anhand von 3947 unabhängigen Reflexen (Fo > 3σ(F2o)), R(ungewichtet) = 0,037]. Sb bindet drei C6H5-Gruppen in der äquatorialen Ebene [mittlerer Abstand Sb–C: 211,1(5)pm] und zwei einzähnige Carboxylatliganden in den apikalen Positionen einer verzerrten trigonalen Bipyramide [mittlerer Abstand Sb–O: 212,0(4) pm]. Aus den relativ kurzen Sb – O(=C)-Abständen [274,4(4) und 294,9(4) pm] und aus der Aufweitung des dem O(=C)-Atom nächsten äquatorialen C–Sb–C-Winkels auf 145,9(2)° [andere C-Sb-C-Winkel: 104,4(2), 109,5(2)°] wird auf schwache Sb–O(=C)-Koordination geschlossen. Schließlich wird eine Korrelation zwischen dem (+, –)I-Effekt des Organoliganden R an M (M = Sb, Bi) und der Stärke der M–O(=C)-Koordination in den Dicarboxylaten R3M[O2C(CH2)n–2-C4H3X]2 vorgeschlagen. Triorganoanümony and Triorganobismuth Derivatives of Carbonic Acids of Five-membered Heterocycles. Crystal and Molecular Structure of (C6H5)3Sb(O2C–2-C4H3S)2 Triorganoantimony- and triorganobismuth dicarboxylates R3M[O2C(CH2)n–2-C4H3X]2 (M = Sb, R = CH3, C6H11, C6H5, 4-CH3OC6H4; M = Bi, R = C6H5, 4-CH3C6H4; n = 0, X = O, S, NH, NCH3. M = Sb, R = CH3, C6H5; M = Bi, R = C6H5; n = 1, X = O, S. M = Sb, R = C6H11, n = 1, X = S; R = 4-FC6H4, n = 0, X = O, S, NCH3; R = 2,4,6-(CH3)3C6H2, n = 0, X = O, S, NH) have been prepared by reaction of R3Sb(OH)2 (R = CH3, C6H11; 2,4,6-(CH3)3C6H2), R3SbO (R = C6H5, 4-CH3OC6H4, 4-FC6H4) or R3BiCO3 with the appropriate five-membered heterocyclic carboxylic acid. From vibrational data for all compounds a trigonal bipyramidal environment around M (two O atoms of unidendate carboxylate ligands in apical, three C atoms (of R) in equatorial positions) is proposed and also an additional weak interaction of O(=C) of each carboxylate group and M. The crystal structure determination of Ph3Sb(O2C–2-C4H3S)2 gives additional prove to this proposal. It crystallizes triclinic [space group P$1; a = 891.8(14), b = 1058.2(12), c = 1435.6(9) pm, α = 68.53(8), β = 85.47(9), γ = 85.99(11)°; Z = 2; d(calc.) = 1.607 Mg m–3; Vcell = 1255.6 Å3; structure determination from 3 947 independent reflexions (Fo > 3σ(F2o)), R(unweighted) = 0.037]. Sb is bonding to three C6H5 groups in the equatorial plane [mean distance Sb–C: 211.1(5) pm] and two unidentate carboxylate ligands in the apical positions of a distorted trigonal bipyramid [mean distance Sb–O: 212.0(4) pm]. From the relatively short Sb–O(=C) distances [274.4(4) and 294.9(4) pm] and from the enlarged value of the equatorial C–Sb–C angle next to the O(=C) atom [145.9(2)°; other C–Sb–C angles: 104.4(2), 109.5(2)°] additional weak Sb–O(=C) coordination is inferred. Finally a correlation between the (+, –) I-effect of the organic ligands It at M and the strength of the M–O = C interaction is suggested.  相似文献   

20.
Bis(fluorbenzoyloxy)methyl phosphane oxides CH3P(O)[OC(O)R]2 [R = C6H42F (1), C6H43F (2), C6H44F (3), C6H32,6F2 (4), C6H2,3,5,6F4 (5)] were prepared by treating silver salts of carboxylic acids AgOC(O)R with CH3P(O)C?2 (IR-, 1H-, 19?F-and 31P{1H}-NMR-data). The mixed anhydrides 1–5 show unusual thermal stability at room temperature. Stability against hydrolysis decreases with increasing number of fluorine-atoms. The reaction of R′P(O)C?2 [R′ = CH3, C6H5, (CH3)3C] with MIOC(O)RF [RF = CF3, C2F5, C6F5; MI = AgI, NaI T?I] was investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号