首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 860 毫秒
1.
Mononuclear silver and mercury complexes bearing bis-N-heterocyclic carbene (NHC) ligands with linear coordination modes have been prepared and structurally characterised. The complexes form metallocyclic structures that display rigid solution behaviour. A larger metallocycle of the form [L2Ag2]2+ [where L = para-bis(N-methylimidazolylidene)xylylene] has been isolated from the reaction of para-xylylene-bis(N-methylimidazolium) chloride and Ag2O. Reaction of silver- and mercury-NHC complexes with Pd(NCCH3)2Cl2 affords palladium-NHC complexes via NHC-transfer reactions, the mercury case being only the second example of a NHC-transfer reaction using a mercury-NHC complex.  相似文献   

2.
Nickel(I) complexes were generated in situ from Ni (PPh3)2Cl2 using activated iron and the complexes combined with N,N′-bis(4-fluorobenzylidene) ethane-1,2-diamine (BFBED) were then used as a catalyst for the 1,4-addition reaction of arylboronic acids to α,β-unsaturated substrates. The reaction proceeded to completion and did not require the addition of a base but the addition of potassium iodide is crucial to this cross-coupling reaction. Moreover, experimental observations suggested a possible Ni(I)–Ni(III) catalytic cycle mechanism.  相似文献   

3.
Acylation of diene Fe(CO)3 complexes using the Perrier complexes RCOCl/AlCl3 in methylene chloride at 0°C gives dienone complexes in high yield. Substitution occurs only at unsubstituted terminal carbons of the diene unit. Quenching the reaction mixtures in cold aqueous ammonia gives cis dienone complexes only. Trans dienone complexes are prepared by subsequent isomerization in methanolic sodium methoxide. Formylation of diene Fe(CO)3 complexes proceeds in modest yield using dichloromethylmethyleter/AlCl3 in methylene chloride to give trans-dienal complexes. Reduction of the dienone and dienal complexes as well as those of dienols and dienoic esters with 4 : 1 AlCl3/LiAlH4 results in complete removal of the oxygen function to give trans-diene complexes in good yield.  相似文献   

4.
The kinetics of the thermal decomposition of solid complexes of the type Ni(NCS)2L2 (L=pyridine,β-picoline and quinoline), of pseudooctahedral configuration, were studied by using isothermal methods, on the basis of losses of weight, in the temperature range 90–191?. The most suitable reaction order for all the complexes under investigation was found to ben=2/3, i.e. the total decomposition rate is determined by the chemical process proper. The calculated values ofE a(in kcal · mole?1) decrease in the following order: Ni(NCS)2py2 (29.4)>Ni(NCS)2(β-pic)2 (27.6)>Ni(NCS)2Q2 (24.3). With increasing volume of the ligand L the reaction rate also increases, and this suggests that the reaction proceeds by dissociative activation. For all the investigated complexes it was found that δH>E A; this may be explained by a several-step mechanism and the complex Ni(NCS)2L is then considered an intermediate.  相似文献   

5.
Nature of the solvent plays a major role in the photochemical behaviour of cis- and trans-[PtCl2(ethylene)(amine)] complexes. Dimeric compounds [Pt2Cl4-(amine)2] are obtained on irradiation of these complexes in chloroform or diethyl ether. A non-stereospecific reaction of photosubstitution is observed in nitrile solvents. When methanol, dimethoxyethane or dimethylformamide are used as solvents, cis and trans complexes have a quite different photochemical behaviour, but in all of the cases, a photodegradation leading to ionic species [PtCl3(ethylene)]? H+ amine and [PtCl3(amine)]? H+ amine is the main reaction.  相似文献   

6.
The lithiated metallocenes ruthenocene (C5H5)2Ru and 1,1′ -dimethylferrocene (C5H4CH3)2Fe react with the metal hexacarbonyls of Group VIB to yield acylato complexes, from which, by subsequent alkylation with [Et3O][BF4], the corresponding pentacarbonylethoxyrunthenocenylcarbene (I—III) as well as pentacarbonylethoxydimethylferrocenylcarbene complexes (IV—VI) of chromium, molybdenum and tungsten are obtained. The reaction of the new tungsten complexes III + VI with boron and aluminium halides (MX3; X = Cl, Br) at low temperatures yields trans-halogenotetracarbonylruthenocenylcarbyne (VII, VIII) and trans-bromotetracarbonyldimethylferrocenylcarbyne complexes (IX). The reaction conditions, the results of spectroscopic and electrochemical measurements, compared to previously discussed ferrocenylcarbene- and -carbyne complexes and the X-ray structure of III are reported.  相似文献   

7.
The phenylthiocarbene complexes, [(CO)5MC(CH3)(SPh)] (M = Cr, Mo, or W) have been prepared in good yield by the reaction of [(CO)5MC(CH3)(OCH3)] (M = Cr, Mo, or W) with NaSPh in benzene/methanol in the presence of HCl. A series of para-substituted phenylthiocarbene complexes of tungsten. [(CO)5WC(CH3)SC6H4Y)], (Y = p-Br, p-F, p-H, p-CH3, p-OCH3 or p-OH) have also been prepared by the reaction of the appropriate arenethiolate ion with [(CO)5WC(CH3)(OCH3)]. Poor nucleophiles such as p-nitrobenzenethiolate and pentafluorobenzenethiolate did not react with [(CO)5WC(CH3)(OCH3) to form the corresponding phenylthiocarbene complex. A mechanism accounting for the formation of these phenylthiocarbene complexes is proposed. The complexes have been characterized by their infrared, electronic, mass, 1H NMR, and 13C NMR spectra. These spectroscopic data have been used to establish the structure of these complexes in solution and indicate that the phenyl ring bonded to sulfur is probably not coplanar with the “carbene” plane.  相似文献   

8.
Density functional theory was used to calculate the intrinsic reaction coordinate of hydrogen atom abstraction from a number of organic molecules of different classes by C7F15 radical. These reactions involve the formation of stable pre- and post-reactive complexes with binding energies comparable to the activation barriers and reaction energies. An analysis of the results obtained using the dimensionless reaction coordinate showed that the generalized Polanyi-Semenov relationship E a = A + 0.5??H + ??H 2/(2W) is fulfilled. For primary and secondary C-H bonds of esters and ketones, it reproduces the calculated activation energies with an error of at most 1 kcal mol?1 provided A = 8.5 kcal mol?1 and W = 43 kcal mol?1. The accuracy of the generalized Polanyi-Semenov relationship decreases when the enthalpy difference between the pre- and post-reactive complexes is used as the ??H value because, as a rule, the structures of these complexes are not directly related to the structure of the transition state.  相似文献   

9.
Neutral [EuL3Phen] complexes were synthesized by the reaction of EuCl3 with heterocyclic diketones-1-(1,5-dimethyl-1H-pyrazol-4-yl)-4,4,4-trifluoro-1,3-butanedione and 4,4,5,5,6,6,6-heptafluoro-1-(1-methyl-1H-pyrazol-4-yl)-1,3-hexanedione—and 1,10-phenanthroline (Phen) in an aqueous alcohol solution in the presence of NaOH. The reaction of GdCl3 with the same diketones under analogous conditions, but without adding 1,10-phenanthroline, yielded [GdL3(H2O)2] complexes. The composition of the complexes was determined by elemental analysis, and their optical and luminescent properties were examined.  相似文献   

10.
Cobalt(I) carbonyl complexes of formula [Co(CO)n(P)5?n]ClO4 (n = 1, 2, 3; P = secondary or tertiary phosphine) have been prepared by reaction of CO under ambient conditions with Co(ClO4)2 · 6H2O and phosphine in isopropyl alcohol. The chemical and spectroscopic properties of these complexes are described and the stoichiometry and mechanism of the carbonylation reaction discussed.  相似文献   

11.
The complexes CoH(PF3)4?n (PPh3)n (n = 1–3) have been prepared by low from the reaction between CoH(PF3)(PPh3)3 and butadiene. The hydrido complexes are active catalysts for the isomerisation of 1-octene to 2-octene under hydrogen or nitrogen.  相似文献   

12.
The equilibria and kinetics of the reaction of Pd(gly)2 complexes with hydrogen ions and chloride ions has been studied by a potentiometric method. The underlying idea of the method is the measurement of solution pH as a function of reaction time t using a glass electrode. The solutions used had the following initial compositions: xM Pd(gly)2, xM Hgly, and 1 M NaCl with x = 1 × 10?4, 5 × 10?4, and 1 × 10?3; initial pH0 was from ~3.5 to ~4.4. The experimentally determined pH versus t dependences and the rate equation for a pseudo-second-order reaction were used to determine the equilibrium constant of formation of Pd(gly)(Hgly)Cl complexes from Pd(gly)2 complexes and the observed rate constant for this reaction, k obs. The dependence of k obs on the pH of the acid solutions studied was assigned to a change in the sequence of the reactions of addition of a hydrogen ion and a chloride ion to the complex Pd(gly)2.  相似文献   

13.
A series of cycloplatinated(II) complexes with general formula of [PtMe(Vpy)(PR3)], Vpy = 2-vinylpyridine and PR3 = PPh3 (1a); PPh2Me (1b); PPhMe2 (1c), were synthesized and characterized by means of spectroscopic methods. These cycloplatinated(II) complexes were luminescent at room temperature in the yellow–orange region’s structured bands. The PPhMe2 derivative was the strongest emissive among the complexes, and the complex with PPh3 was the weakest one. Similar to many luminescent cycloplatinated(II) complexes, the emission was mainly localized on the Vpy cyclometalated ligand as the main chromophoric moiety. The present cycloplatinated(II) complexes were oxidatively reacted with MeI to yield the corresponding cycloplatinated(IV) complexes. The kinetic studies of the reaction point out to an SN2 mechanism. The complex with PPhMe2 ligand exhibited the fastest oxidative addition reaction due to the most electron-rich Pt(II) center in its structure, whereas the PPh3 derivative showed the slowest one. Interestingly, for the PPhMe2 analog, the trans isomer was stable and could be isolated as both kinetic and thermodynamic product, while the other two underwent trans to cis isomerization.  相似文献   

14.
Two new Pd(II) N-heterocyclic iminocarbene complexes (C-N)PdCl2 that contain 5-membered chelate rings have been prepared by carbene transfer from a silver iminocarbene precursor to (COD)PdCl2. The new Pd imonocarbene complexes, as well as two that have been previously reported (altogether three 5-membered and one 6-membered chelate ring complexes) have been evaluated as catalysts for the Suzuki-Miyaura coupling reaction. The complexes were found to be active in the reaction, but without exceptional catalytic performances. The 5-membered chelate ring complexes appeared to be more robust and remained active for a longer time than the 6-membered ring congener. The catalytic performance of the 5-membered chelate ring complexes appeared to be rather insensitive to the steric demands of the imine-N-aryl group. The X-ray structure of one of the Ag iminocarbene complexes reveals the κ1(C) bonding of the iminocarbene moiety in a nearly linear Ag(I) complex; two monomeric units are associated through a weak Ag-Ag interaction. The X-ray structures of two new Pd iminocarbene complexes (C-N)PdCl2 confirm the chelating κ2(C,N) nature of the iminocarbene moiety; in both complexes, the Pd-Cl distances trans to carbene-C are slightly longer than those trans to imine-N.  相似文献   

15.
This review paper summarizes the reactivities of metal dithiolene complexes based on the ‘coexistence of aromaticity and unsaturation’ in the five-membered metallacycle, the so-called metalladithiolene ring (MS2C2). The 16-electron [LM(dithiolene)] (LM = CpMIII, Cp*MIII, (C6R6)MII) complexes are coordinatively unsaturated and usually show M-S centered cycloaddition reactions with nucleophiles (e.g. diazoalkanes, organic azides, quadricyclane) and electrophiles (e.g. tetracyanoethylene oxide, activated acetylene). The resulting metalladithiolene cycloadducts, which have three-membered M-S-C or M-S-N rings, further react with protic acids or PR3 to undergo the ring-opening reactions involving the M-C bond, M-S bond or M-N bond cleavages. Furthermore, diverse adduct dissociations are observed by thermal, photochemical or electrochemical redox reactions. Such reactions normally produce the original [LM(dithiolene)] complexes (non-adduct) and the eliminated fragments. Among them, the Co-S centered imido adduct [CpCo(dithiolene)(NR)] (R = Ts, Ms) reacted under thermal conditions in the presence of PR3 to undergo the intramolecular imido migration reaction to the Cp ligand, giving [(C5H4-NHR)Co(dithiolene)] complexes. The M-S centered multinuclear cluster complexes are obtained by the reaction of [LM(dithiolene)] with low valent M(CO)n complexes. The square-planar bis(dithiolene) complexes [M(dithiolene)2]0 (M = Ni, Pd, Pt) or tris(dithiolene) complexes [M(dithiolene)3]0 yield cycloaddition products with olefins. These reactions are due to ligand centered reactions made possible by a molecular orbital overlap between dithiolene LUMO and olefin HOMO. Similar ligand centered adducts are obtained by the reaction of dianionic [M(dithiolene)2]2− with haloalkanes or dihaloalkanes. Also these adducts of bis(dithiolene) complex are dissociated photochemically and electrochemically. This paper also describes the reactivities of organometallic o-carborane dithiolate complexes, which are generally formulated as [LM(S2C2B10H10)] (LM = CpCo, Cp*Rh, Cp*Ir, (p-cymene)Ru and (p-cymene)Os). Diverse addition reactions are reported; in particular, the reaction with acetylene involves B-H bond activation in the carborane moiety.  相似文献   

16.
A series of BR2 complexes of α-pyrrolyl dipyrrin were synthesized from BF2 complex of α-pyrrolyl dipyrrin (3-pyrrolyl BODIPY) by treating it with various alkyl- and aryl magnesium halides under mild Grignard reaction conditions. The BR2 complexes were functionalized at α-position of the appended pyrrole ring with formyl, chloro and bromo functional groups and these functionalized BR2 complexes were used further to prepare various novel derivatives of BR2 complexes. The BR2 complexes were characterized by HR mass, NMR, absorption, fluorescence, and electrochemical techniques. Two of the BR2 complexes were structurally characterized by X-ray crystallography. Our studies revealed that the substitution of fluorine atoms at the boron center of 3-pyrrolyl BODIPYs with different alkyl/aryl groups significantly alters their structural, spectral and electrochemical properties. The DFT studies also support the alteration of the electronic properties of the BR2 complexes.  相似文献   

17.
Triflic acid (HOTf)-bound nonheme Mn(iv)-oxo complexes, [(L)MnIV(O)]2+–(HOTf)2 (L = N4Py and Bn-TPEN; N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine and Bn-TPEN = N-benzyl-N,N′,N′-tris(2-pyridylmethyl)ethane-1,2-diamine), were synthesized by adding HOTf to the solutions of the [(L)MnIV(O)]2+ complexes and were characterized by various spectroscopies. The one-electron reduction potentials of the MnIV(O) complexes exhibited a significant positive shift upon binding of HOTf. The driving force dependences of electron transfer (ET) from electron donors to the MnIV(O) and MnIV(O)–(HOTf)2 complexes were examined and evaluated in light of the Marcus theory of ET to determine the reorganization energies of ET. The smaller reorganization energies and much more positive reduction potentials of the [(L)MnIV(O)]2+–(HOTf)2 complexes resulted in greatly enhanced oxidation capacity towards one-electron reductants and para-X-substituted-thioanisoles. The reactivities of the Mn(iv)-oxo complexes were markedly enhanced by binding of HOTf, such as a 6.4 × 105-fold increase in the oxygen atom transfer (OAT) reaction (i.e., sulfoxidation). Such a remarkable acceleration in the OAT reaction results from the enhancement of ET from para-X-substituted-thioanisoles to the MnIV(O) complexes as revealed by the unified ET driving force dependence of the rate constants of OAT and ET reactions of [(L)MnIV(O)]2+–(HOTf)2. In contrast, deceleration was observed in the rate of H-atom transfer (HAT) reaction of [(L)MnIV(O)]2+–(HOTf)2 complexes with 1,4-cyclohexadiene as compared with those of the [(L)MnIV(O)]2+ complexes. Thus, the binding of two HOTf molecules to the MnIV(O) moiety resulted in remarkable acceleration of the ET rate when the ET is thermodynamically feasible. When the ET reaction is highly endergonic, the rate of the HAT reaction is decelerated due to the steric effect of the counter anion of HOTf.  相似文献   

18.
The electrochemical behavior of copper(I) thiosulfate complexes from aqueous solutions containing different amounts of sodium perchlorate NaClO4 is studied by the methods of hydrodynamic voltammetry and potentiometry with a Na+-selective electrode. The electrochemical reaction orders p with respect to Na+ cations are determined from the dependences of exchange currents and direct reaction currents at fixed potential on the equilibrium concentration of Na+ cations. The reaction order p is close to 1 in the Na+ concentration range of 0.06–0.12 M and drops to zero for $c_{Na^ + } $ > 0.12 M. The ion pair (IP) {Na[Cu(S2O3)2]}2? the formation of which precedes the electron transfer reaction is the electrochemically active species for the reduction of copper(I) thiosulfate complexes. The stability constant of IP is determined (K = 27.0 ± 2.4) as well as the rate constants of IP formation and decomposition.  相似文献   

19.
The homogeneous hydrogenation of cyclohexene catalyzed by Rh(I) and Ir(I) complexes of the terdentate ligands (L) HN(CH2CH22)2 (A = P, As) was investigated in the temperature range 20 - 50°C. Thermodynamic parameters corresponding to the formation of the dihydrido complexes ML(H)2Cl (M = Ir(I), Rh(I)) and the olefin complexes MLCl(olefin) were computed. The activation parameters corresponding to the rate constant were also calculated. An inverse relationship is found between the enthalpy of formation ΔH0 of the dihydrido complexes and the enthalpy of activation ΔH of the hydrogenation step. This relationship establishes the involvement of the dihydrido complexes as the active intermediates in olefin coordination and hydrogen transfer. The stereochemistry of the terdentate complexes in dihydride formation is discussed. It is concluded that the enthalpy of formation ΔH0 of the dihydrido complexes of terdentate ligands is very favourable, as there is no change in the configuration of the ligand in oxidative addition reaction. The significance of the steric factors in the hydrogenation step is discussed.  相似文献   

20.
Reaction of 2-arylbenzimidazole with PdCl2(CH3CN)2 in CH2Cl2 affords benzimidazole palladium (II) complexes in high yields. The structure of complexes C1, C2, and C3 has been confirmed by X-ray structure analysis. The configuration of complexes depends on the substituent on the 2-position of benzimidazole. Phenyl affords the complexes in cis-fashion due to π-π stacking of phenyl and benzimidazole. Tolyl affords the complex in trans-fashion. The catalytic studies show that cis-configured 2-phenylbenzimidazole palladium (II) complexes are highly efficient catalysts in the Suzuki-Miyaura reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号