首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The solution MCD spectrum of (h5C5H5)Ho(III)(h8C8H8) is dominated by C terms but displays distinct A term under the hypersensitive 5I85G6 transition. Intermediate field analysis suggests this transition originates from the first electronic excited state and is enhanced by τ cyclopentadienyl ligand polarization.  相似文献   

2.
The title compound has been prepared by treatment of a solution of cyclopentadienylsodium and triphenylphosphine in tetrahydrofuran with a solution of silver trifluoromethanesulfonate (AgSO3CF3) in tetrahydrofuran. It decomposes slowly at room temperature, but can be stored indefinitely at —80°C. IR spectra indicate that a C5H5-h5-group is present in the molecule and this conclusion is confirmed by 1H and 13C NMR spectroscopy.  相似文献   

3.
Long-range multipolar expansion coefficients Cm, m = 3, 6, 8, 10, are calculated for the interactions M(ns2S) with M(ns2S) or M(np2P) for M = Li and Na. The results obtained are in fair agreement with recent experimental estimations for the X1Σ g+ and 1Πg states of Na2 and are compared with theoretical estimations for Li2 and Na2.  相似文献   

4.
The reactions between h5-CpFe(CO)2R (R = CH2CHCH2; CH2CMe=CH2; CH2CHCHMe; CH2CHCMe2) and stannous chloride in tetrahydrofuran afford the insertion products h5-CpFe(CO)2SnCl2R. When treated with stannous chloride in methanol or with excess stannous chloride in tetrahydrofuran, h5-CpFe(CO)2CH2CMeCH2 affords primarily h5-CpFe(CO)2SnCl3. The allenyl, 2-butynyl or cationic isobutylene complexes (R = CHCCH2; CH2 CCMe; CH2CMe+2) yield only h5-CpFe(CO)2SnCl3. Stannous iodide reacts with h5-CpFe(CO)2CH2CHCH2 in benzene to form h5-CpFe(CO)2I. Plumbous chloride in methanol fails to react with the above complexes.  相似文献   

5.
6.
Dissolution of h5-C5H5Fe(CO)2R (I) (R = cyclohexyl or cyclohexylmethyl) in DMSO leads to the formation of a solvent coordinated acyl complex, h5-C5H5Fe(CO)(COR)(DMSO) (II). Treatment of this complex with triphenylphosphine leads to its conversion to h5-C5H5Fe(COR)(PPh3) (III). Rates for the reaction I ? and II → III have been determined. A comparison of the rates of the reaction I → III in eight solvents shows no specific rate acceleration in DMSO and no correlation with solvent donicity. The results are in accord with a two step mechanism in which the first intermediate is the coordiantively-unsaturated species h5-C5H5Fe(COR)(CO). The small spread in rates for solvents of widely different dielectric constants suggests little charge separation in the transition state for this step.  相似文献   

7.
The electronic absorption spectrum of (η5-C5H5)Mn(CO)2[C(C6H5)2]shows an intense maximum which is assigned to a MLCT transition in which the empty pπ orbital on the carbene carbon is populated. Upon irradiation of this band, the complex undergoes a decomposition with a disappearance quantum yield Φ = 0.10 ± 0.01 independent of solvent. In the CT excited state, the complex can be roughly described as containing d5 MnII and a diphenylcarbene radical anion ligand C(C6H5)2?. Due to the kinetic lability, the complex decomposes producing a MnII species and the free carbene radical anion, which then undergoes secondary reactions. In addition, small amounts of substitution product are observed. It is proposed that prior to total decomposition of the excited state, a radical pair (η5-C5H5)Mn(CO)2S+/C(C6H5)2?forms (S = solvent). A back electron transfer from C(C6H5)2?to the labile cation competes with decomposition to produce the substituted complex and free carbene.  相似文献   

8.
9.
Measurements of magnetic susceptibility on compounds containing stoichiometric Co4+ are reported. The compound Ba2CoO4 has the Co4+(d5) ion at a tetrahedral site and displays a susceptibility of the expected magnitude for S = 52. The compounds Ba3Co2CO9 and BaCoO3 have the Co4+ at an octahedral site and show a susceptibility expected for low spin, S = 12. For the low spin case significant deviations from Kotani's calculated susceptibility were observed. Improvement of the theory was made through incorporation of the effects of distortion from perfect octahedral symmetry and the inclusion of higher electronic configurations above t52 in the 2T2 ground state. A case of low spin Ni in octahedral environment is also reported.  相似文献   

10.
The synthesis of a new class of two-dimensional triazole compounds is described, including the crystal structure of [Co(NCS)2(btr)2]H2O [btr stands for 4,4′-bis-1,2,4-triazole (C4H4N6)]. Crystals are monoclinic, space group C2/c, a = 11.159(1) Å, b = 13.047(4) Å, c = 12.993(3) Å, β = 91.81(2)°, Z = 4. The structure has been solved by Fourier and direct methods and refined by full-matrix least squares to R = 0.0229, Rw = 0.0283. The structure consists of layers of six-coordinated cobalt atoms, each having two trans-oriented N-bonded thiocyanate groups [CoNCS 2.098(2) Å] and linked together in the equatorial plane by single bridges of btr to a two-dimensional network. The btr ligand coordinates through its N(1) and N(1′) atoms [CoN 2.128(1) and 2.142(1) Å]. The intralayer CoCo distance is 9.207(2) Å, and the inter-layer CoCo distance is 8.584(1) Å. The magnetic susceptibilities of the compound and of the isostructural nickel and iron compounds are discussed. The iron compound exhibits a high-spin-low-spin crossover at liquid-nitrogen temperatures, as shown by magnetic susceptibility.  相似文献   

11.
The crystal structure of the new Bi∼3Cd∼3.72Co∼1.28O5(PO4)3 has been refined from single crystal XRD data, R1=5.37%, space group Abmm, a=11.5322(28) Å, b=5.4760(13) Å, c=23.2446(56) Å, Z=4. Compared to Bi∼1.2M∼1.2O1.5(PO4) and Bi∼6.2Cu∼6.2O8(PO4)5, this compound is an additional example of disordered Bi3+/M2+ oxyphosphate and is well described from the arrangement of double [Bi4Cd4O6]8+ (=D) and triple [Bi2Cd3.44Co0.56O4]6+ (=T) polycationic ribbons formed of edge-sharing O(Bi,M)4 tetrahedra surrounded by PO4 groups. According to the nomenclature defined in this work, the sequence is TT/DtDt, where t stands for the tunnels created by PO4 between two subsequent double ribbons and occupied by Co2+. The HREM study allows a clear visualization of the announced sequence by comparison with the refined crystal structure. The Bi3+/M2+ statistic disorder at the edges of T and D entities is responsible for the PO4 multi-configuration disorder around a central P atom. Infrared spectroscopy and neutron diffraction of similar compounds (without the highly absorbing Cadmium) even suggests the long range ordering loss for phosphates. Therefore, electron diffraction shows the existence of a modulation vector q*=1/2a*+(1/3+ε)b* which pictures cationic ordering in the (001) plane, at the crystallite scale. This ordering is largely lost at the single crystal scale. The existence of mixed Bi3+/M2+ positions also enables a partial filling of the tunnels by Co2+ and yields a composition range checked by solid state reaction. The title compound can be prepared as a single phase and also the M=Zn2+ term can be obtained in a biphasic mixture. For M=Cu2+, a monoclinic distortion has been evidenced from XRD and HREM patterns but surprisingly, the orthorhombic ideal form can also be obtained in similar conditions.  相似文献   

12.
Polarographic, cyclic voltammetric and controlled-potential coulometric studies of copper(II) nitrate and perchlorate in dimethylformamide are reported. Copper(II) in copper(II) perchlorate solutions is directly reduced in a 2e step to copper metal at platinum electrodes and to a copper amalgam at mercury electrodes. Copper(II) in the presence of nitrate forms a complex of composition Cu(N03)2 in DMF; the dissociation constant, measured polarographically, is 9 × lO-5. The copper(II) nitrate complex is electrochemically reduced in two steps consisting of a reversible dissociation of the complex followed by direct reduction of copper(II) ion to copper(0). The diffusion coefficients of copper(II) ion and the copper(II) nitrate complex are 4.91 × lO-6 cm2 s-1 and 4.33 × 10-6 cm2 s-1, respectively.  相似文献   

13.
The thermal behaviour and some relationships between the physical properties and structure of complexes of general formula (n-CnH2n+1NH2)2CuCl2, with n = 10, 12, ? 18, have been investigated by DSC and X-ray powder diffraction techniques. The high enthalpy solid—solid phase transitions observed for the complexes in the temperature range 350–390 K could be associated with the disordering of the hydrocarbon regions of the structure, as already observed for other similar layer compounds.  相似文献   

14.
15.
The title compound crystallizes in the orthorhombic space group P212121 with 4 molecules in the unit cell (cell dimensions: a 9.778(2), b 10.639(2) and c 12.423(4) Å). The structure was solved by means of the heavy atom method. The rhodium atom is linked to both olefinic double bonds. The terpene carbonyl group does not participate in coordination to rhodium. Unlike the endocyclic olefinic group, which is approximately perpendicular to the coordination plane of rhodium, the exocyclic Cz.sbnd;C double bound shows a considerable deviation from this arrangement. The π-complexation of carvone with rhodium proceeds diastereospecifically. The absolute configuration of (+)-carvone is 4S in agreement with the assignment derived by indirect chemical correlation.  相似文献   

16.
Perovskites of the type A2+3B2+M5+2O9, where A2+ = Ba, Sr; B2+ = Mn, Co, Ni, Zn; M5+ = Nb, Ta, show order-disorder phenomena. At lower temperatures a thermodynamically unstable disordered cubic perovskite is formed (13 formula unit—AB13M23O3—in the cell), which transforms irreversibly into a 1: 2 ordered high-temperature form with 3L structure (sequence (c)3). For A2+ = Ba this lattice is hexagonal (space group P3m1; one formula unit in the cell); with A2+ = Sr a triclinic distortion is observed. For Ba3CoNb2O9 a second transformation into a cubic disordered perovskite takes place at 1500°C. This transition is reversible and of the order-disorder type. The vibrational and diffuse reflectance spectra are discussed.  相似文献   

17.
Phases and structural phase transitions of the compounds (CH3NH3)2MnCl4, (C2H5NH3)2MnCl4 and (C3H7NH3)2MnCl4 have been studied by means of thermoanalytical methods (DSC) and X-ray single crystal and powder diffraction data in the temperature range of 85–480°K at normal pressure. All phases show perovskite-like layer structures. The high temperature phases (α phase) correspond to the K2NiF4 type and may be regarded as the aristotype of each polymorphic compound. All transitions are reversible. Transition patterns are:
Based on the DSC peak-shape analysis and diffraction data a model of a tilting system of the MnCl6-octahedra layer is introduced in order to understand essential features of structures of different phases and their transition behavior. Single crystal film data of (C3H7NH3)2MnCl4 phases reveal some disorder phenomena. The ε phase exhibits a superstructure along [010] with a triplication of the shortest axis corresponding to the δ phase. The γ phase of this compound shows strong satellite reflections, due to a transverse distortion wave along the [100] lattice direction.  相似文献   

18.
Reaction of YbI2 with two equivalents of cyclopentylindenyl lithium (C5H9C9H6Li) affords ytterbium(II) substituted indenyl complex (C5H9C9H6)2Yb(THF)2 (1) which shows high activity to ring-opening polymerization (ROP) of lactones. The reaction between YbI2 and cyclopentylcyclopentadienyl sodium (C5H9C5H4Na) gives complex [(C5H9C5H4)2Yb(THF)]2O2 (2) in the presence of a trace amount of O2, the molecular structure of which comprises two (C5H9C5H4)2Yb(THF) bridged by an asymmetric O2 unit. The O2 unit and ytterbium atoms define a plane that contains a Ci symmetry center.  相似文献   

19.
The complexes (η5-C5H5)Fe(CO)21-acenaphthenyl) (I), (η5-C5H5)Fe(CO)21-trans-β-deuterioacenaphthenyl) (II), and (η-C5D5)Fe(CO)2, (η1-acenaphthenyl) (XIII) have been prepared and their thermal decomposition studied in vacuo and in refluxing toluene. All three complexes decompose to produce mixtures of acenaphthene (VII), acenaphthylene (VIII), and [C5H5Fe(CO)2]2 (VI). Biacenaphthenyl (IX) is also obtained from the thermolysis of I in toluene. The formation of alkene VIII, and, to a lesser extent, alkane VII is suppressed by external CO. Thermolysis of I in toluene-d8 and of II in vacuo and in toluene produces deuterium-enriched VII. The acenaphthene generated from the decomposition of XIII also contains deuterium. The above observations are accomodated by a mechanistic scheme involving competing β-elimination, ironcarbon bond homolysis to produce the acenaphthenyl radical, and CpH abstraction by an undetermined pathway.  相似文献   

20.
The aldehydic benzyl ethers PhCH2OC6H4CHO (2; a/b = para/meta series) are readily available from the corresponding phenols and react with Wittig reagents derived from [Ph3PCH2CH2Rf8]+I (Rf8=(CF2)7CF3) to give PhCH2OC6H4CHCHCH2Rf8 (86-93%, Z major). Reactions with H2 over Pd/C give the fluorous phenols HOC6H4(CH2)3Rf8(4a,b; 87-91%). Condensations with PCl3 and NEt3 (3.0:1.0:3.3 mol ratio) give the fluorous phosphites P[OC6H4(CH2)3Rf8]3(5a,b; 92-94%), but traces of 4a,b are difficult to remove. The phthalate-based benzyl ethers PhCH2OC6H3(COOR)2 (7; ,5/3,4 OC6H3-3,n-(R)2 series) are easily accessed and reduced with LiAlH4 to the diols PhCH2OC6H3(CH2OH)2(8c,d; 89-90%). Diol 8c and the Dess-Martin periodinane react to give the dialdehyde PhCH2OC6H3(CHO)2 (9c; 95%). This is elaborated by a sequence analogous to 2→4→5 to the fluorous phenol HOC6H3((CH2)3Rf8)2 (11c; 97%/96%, two steps) and phosphite P[OC6H3((CH2)3Rf8)2]3 (12c, 92%), from which traces of 11c are difficult to remove. Diol 8d can be similarly elaborated to 11d, but the dialdehyde 9d is labile and the combined yield of the Dess-Martin/Wittig steps is 32%. The CF3C6F11/toluene partition coefficients of 11c,d, and 12c (two pony tails; 70:30, 72:28, 92:8) are much higher than those of 4a and b (one pony tail; 12:88, 14:86).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号