首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
It is well known that super-efficiency data envelopment analysis (DEA) approach can be infeasible under the condition of variable returns to scale (VRS). By extending of the work of Chen (2005), the current study develops a two-stage process for calculating super-efficiency scores regardless whether the standard VRS super-efficiency mode is feasible or not. The proposed approach examines whether the standard VRS super-efficiency DEA model is infeasible. When the model is feasible, our approach yields super-efficiency scores that are identical to those arising from the original model. For efficient DMUs that are infeasible under the super-efficiency model, our approach yields super-efficiency scores that characterize input savings and/or output surpluses. The current study also shows that infeasibility may imply that an efficient DMU does not exhibit super-efficiency in inputs or outputs. When infeasibility occurs, it can be necessary that (i) both inputs and outputs be decreased to reach the frontier formed by the remaining DMUs under the input-orientation and (ii) both inputs and outputs be increased to reach the frontier formed by the remaining DMUs under the output-orientation. The newly developed approach is illustrated with numerical examples.  相似文献   

2.
The production possibility set (PPS) is defined as the set of all inputs and outputs of a system in which inputs can produce outputs. In this paper, we deal with the problem of finding the strong defining hyperplanes of the PPS. These hyperplanes are equations that form efficient surfaces. It is well known that the optimal solutions of the envelopment formulation for extreme efficient units are often highly degenerate and, therefore, may have alternate optima for the multiplier form. Every optimal solution of the multiplier form yields a hyperplane which is supporting at the PPS. We will show that the hyperplane which corresponds to an extreme optimal solution of the multiplier form (in evaluating an efficient DMU), and whose components corresponding to inputs and outputs are non zero is a strong defining hyperplane of the PPS. This will be discussed in details in this paper. These hyperplanes are useful in sensitivity and stability analysis, the status of returns to scale of a DMU, incorporating performance into the efficient frontier analysis, and so on. Using numerical examples, we will demonstrate how to use the results.  相似文献   

3.
Data envelopment analysis (DEA) is basically a linear programming based technique used for measuring the relative performance of organizational units, referred to as decision-making units (DMUs), where the presence of multiple inputs and outputs makes comparisons difficult. The ability of identifying frontier DMUs prior to the DEA calculation is of extreme importance to an effective and efficient DEA computation. In this paper, a method for identifying the efficient frontier is introduced. Then, the efficiency score and returns to scale (RTS) characteristic of DMUs will be produced by means of the equation of efficient frontier.  相似文献   

4.
Additive efficiency decomposition in two-stage DEA   总被引:1,自引:0,他引:1  
Kao and Hwang (2008) [Kao, C., Hwang, S.-N., 2008. Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan. European Journal of Operational Research 185 (1), 418–429] develop a data envelopment analysis (DEA) approach for measuring efficiency of decision processes which can be divided into two stages. The first stage uses inputs to generate outputs which become the inputs to the second stage. The first stage outputs are referred to as intermediate measures. The second stage then uses these intermediate measures to produce outputs. Kao and Huang represent the efficiency of the overall process as the product of the efficiencies of the two stages. A major limitation of this model is its applicability to only constant returns to scale (CRS) situations. The current paper develops an additive efficiency decomposition approach wherein the overall efficiency is expressed as a (weighted) sum of the efficiencies of the individual stages. This approach can be applied under both CRS and variable returns to scale (VRS) assumptions. The case of Taiwanese non-life insurance companies is revisited using this newly developed approach.  相似文献   

5.
In this study, we investigate the factors that influence the object-oriented (OO) component size and source code documentation. For multiple inputs and multiple outputs, we use data envelopment analysis to illustrate that non-linear variable returns to scale (VRS) economies exist for OO component size and source code documentation. The existence of non-linear variable returns to scale economies indicates that non-linear regression models will perform better than linear regression models. Using empirical data, we compare the performance of non-linear artificial neural network (ANN) forecasting model and linear regression model. Our results indicate that the ANN model performs well when VRS economies exist between multiple inputs and multiple outputs.  相似文献   

6.
Data envelopment analysis (DEA) model selection is problematic. The estimated efficiency for any DMU depends on the inputs and outputs included in the model. It also depends on the number of outputs plus inputs. It is clearly important to select parsimonious specifications and to avoid as far as possible models that assign full high-efficiency ratings to DMUs that operate in unusual ways (mavericks). A new method for model selection is proposed in this paper. Efficiencies are calculated for all possible DEA model specifications. The results are analysed using Principal Component Analysis. It is shown that model equivalence or dissimilarity can be easily assessed using this approach. The reasons why particular DMUs achieve a certain level of efficiency with a given model specification become clear. The methodology has the additional advantage of producing DMU rankings. These rankings can always be established independently of whether the model is estimated under constant or under variable returns to scale.  相似文献   

7.
In data envelopment analysis (DEA) an inefficient unit can be projected onto an efficient target that is far away, i.e. reaching the target may demand large reductions in inputs and increases in outputs. When the inputs and outputs modifications planned are large, it may be troublesome to carry them out all at once. In order to help an inefficient unit reach a distant target, a strategy of gradual improvements with successive, intermediate targets has been proposed. This paper extends such approach to the variable returns to scale (VRS) case. In the VRS scenario we distinguish between units that are technical efficient and those that are not. On the one hand, for those units that are not technical efficient the proposed approach determines successive intermediate targets leading to the technical efficiency frontier, i.e. the priority for those units is to attain technical efficiency. On the other hand, for those units that are technical efficient but not scale efficient the proposed approach computes a sequence of targets ending in the global efficiency frontier, i.e. when technical efficiency is guaranteed the goal is then to attain global efficiency. In both cases, the successive targets are obtained by iteratively solving specific DEA models that take into account given bounds on the rates of change in inputs and outputs that the unit can implement in each step.  相似文献   

8.
This paper develops a DEA (data envelopment analysis) model to accommodate competition over outputs. In the proposed model, the total output of all decision making units (DMUs) is fixed, and DMUs compete with each other to maximize their self-rated DEA efficiency score. In the presence of competition over outputs, the best-practice frontier deviates from the classical DEA frontier. We also compute the efficiency scores using the proposed fixed sum output DEA (FSODEA) models, and discuss the competition strategy selection rule. The model is illustrated using a hypothetical data set under the constant returns to scale assumption and medal data from the 2000 Sydney Olympics under the variable returns to scale assumption.  相似文献   

9.
For three decades a growing interest in the modeling of desirable and undesirable outputs has led to a theoretical and methodological debate in the nonparametric literature on production technology and efficiency. The first main discussion is about the way of modeling ‘bad/undesirables’ as inputs or outputs, or by transformation functions. The second debate concerns the implications of the weak disposability assumption in the modeling of bad outputs, in particular the possibility of assigning unexpected signs to shadow prices of bad outputs. In addition, we point out a current error in the modeling of weak disposability under a variable returns to scale technology. In this paper we introduce a hybrid model to ensure the economically meaningful jointness of good and bad outputs while constraining shadow prices of bad outputs to their expected sign. We argue that it is a sound compromise to model undesirable outputs with a meaningful primal/dual economic interpretation. Finally we propose an extension to define shadow prices for undesirable outputs following the Law of One Price (LoOP) rule.  相似文献   

10.
This paper addresses issues of returns to scale in Data Envelopment Analysis. Starting with the model developed by Banker, but avoiding Banker's conclusions on returns-to-scale, the paper shows how two close variants (inputs and outputs oriented) of the Banker-Charnes-Cooper model can be used to provide precise estimates of returns to scale. The estimation of returns to scale for each unit is done by testing the existence of solutions in four regions defined in the neighborhood of the analyzed unit. Numerical examples and graphs are used to illustrate the proposed procedures.  相似文献   

11.
DEA model with shared resources and efficiency decomposition   总被引:2,自引:0,他引:2  
Data envelopment analysis (DEA) has proved to be an excellent approach for measuring performance of decision making units (DMUs) that use multiple inputs to generate multiple outputs. In many real world scenarios, DMUs have a two-stage network process with shared input resources used in both stages of operations. For example, in hospital operations, some of the input resources such as equipment, personnel, and information technology are used in the first stage to generate medical record to track treatments, tests, drug dosages, and costs. The same set of resources used by first stage activities are used to generate the second-stage patient services. Patient services also use the services generated by the first stage operations of housekeeping, medical records, and laundry. These DMUs have not only inputs and outputs, but also intermediate measures that exist in-between the two-stage operations. The distinguishing characteristic is that some of the inputs to the first stage are shared by both the first and second stage, but some of the shared inputs cannot be conveniently split up and allocated to the operations of the two stages. Recognizing this distinction is critical for these types of DEA applications because measuring the efficiency of the production for first-stage outputs can be misleading and can understate the efficiency if DEA fails to consider that some of the inputs generate other second-stage outputs. The current paper develops a set of DEA models for measuring the performance of two-stage network processes with non splittable shared inputs. An additive efficiency decomposition for the two-stage network process is presented. The models are developed under the assumption of variable returns to scale (VRS), but can be readily applied under the assumption of constant returns to scale (CRS). An application is provided.  相似文献   

12.
Two different types of inputs (variable inputs and quasi-fixed inputs) are incorporated into an analytical framework of dynamic data envelopment analysis (DEA). A unique feature of the quasi-inputs is that those are considered as outputs at the current period, while being treated as inputs at the next period. The dynamic DEA can measure interdependency among consecutive periods. This study incorporates the concept of returns to scale into the dynamic DEA.  相似文献   

13.
Data envelopment analysis is a mathematical programming technique for identifying efficient frontiers for peer decision making units with multiple inputs and multiple outputs. These performance factors (inputs and outputs) are classified into two groups: desirable and undesirable. Obviously, undesirable factors in production process should be reduced to improve the performance. In the current paper, we present a data envelopment analysis (DEA) model in which can be used to improve the relative performance via increasing undesirable inputs and decreasing undesirable outputs.  相似文献   

14.
Stochastic Data Envelopment Analysis (DEA) models were developed by taking random disturbances into account for the possibility of variations in input-output data structure. The stochastic efficiency measure of a Decision Making Unit (DMU) is defined via joint probabilistic comparisons of inputs and outputs with other DMUs, and can be characterized by solving a chance constrained programming problem. Deterministic equivalents are derived for both situations of multivariate symmetric random disturbances and a single random factor in the production relationships. An analysis of stochastic variable returns to scale is developed.  相似文献   

15.
In data envelopment analysis (DEA), identification of the strong defining hyperplanes of the empirical production possibility set (PPS) is important, because they can be used for determining rates of change of outputs with change in inputs. Also, efficient hyperplanes determine the nature of returns to scale. The present work proposes a method for generating all linearly independent strong defining hyperplanes (LISDHs) of the PPS passing through a specific decision making unit (DMU). To this end, corresponding to each efficient unit, a perturbed inefficient unit will be defined and, using at most m+s linear programs, all LISDHs passing through the DMU will be determined, where m and s are the numbers of inputs and outputs, respectively.  相似文献   

16.
The awareness of importance of product recovery has grown swiftly in the past few decades. This paper focuses on a problem of inventory control and production planning optimisation of a generic type of an integrated Reverse Logistics (RL) network which consists of a traditional forward production route, two alternative recovery routes, including repair and remanufacturing and a disposal route. It is assumed that demand and return quantities are uncertain. A quality level is assigned to each of the returned products. Due to uncertainty in the return quantity, quantity of returned products of a certain quality level is uncertain too. The uncertainties are modelled using fuzzy trapezoidal numbers. Quality thresholds are used to segregate the returned products into repair, remanufacturing or disposal routes. A two phase fuzzy mixed integer optimisation algorithm is developed to provide a solution to the inventory control and production planning problem. In Phase 1, uncertainties in quantity of product returns and quality of returns are considered to calculate the quantities to be sent to different recovery routes. These outputs are inputs into Phase 2 which generates decisions on component procurement, production, repair and disassembly. Finally, numerical experiments and sensitivity analysis are carried out to better understand the effects of quality of returns and RL network parameters on the network performance. These parameters include quantity of returned products, unit repair costs, unit production cost, setup costs and unit disposal cost.  相似文献   

17.
This study proposes a use of Data Envelopment Analysis (DEA) for environmental assessment. Firms usually produce not only desirable but also undesirable outputs as a result of their economic activities. The concept of disposability on undesirable outputs is separated into natural and managerial disposability. Natural disposability is an environmental strategy in which firms decrease their inputs to reduce a vector of undesirable outputs. Given the reduced input vector, they attempt to increase desirable outputs as much as possible. Managerial disposability involves the opposite strategy of increasing an input vector. The concept of disposability expresses an environmental strategy that considers a regulation change on undesirable outputs as a new business opportunity. Firms attempt to improve their unified (operational and environmental) performance by utilizing new technology and/or new management. Considering the two disposability concepts, this study discusses how to measure unified efficiency under managerial disposability and then discusses how to measure environmental efficiency. The proposed uses of DEA can serve as an empirical basis for measuring new economic concepts such as “Scale Damages (SD)”, corresponding to scale economies for undesirable outputs, and “Damages to Scale (DTS)”, corresponding to returns to scale for undesirable outputs.  相似文献   

18.
This paper develops a new radial super-efficiency data envelopment analysis (DEA) model, which allows input–output variables to take both negative and positive values. Compared with existing DEA models capable of dealing with negative data, the proposed model can rank the efficient DMUs and is feasible no matter whether the input–output data are non-negative or not. It successfully addresses the infeasibility issue of both the conventional radial super-efficiency DEA model and the Nerlove–Luenberger super-efficiency DEA model under the assumption of variable returns to scale. Moreover, it can project each DMU onto the super-efficiency frontier along a suitable direction and never leads to worse target inputs or outputs than the original ones for inefficient DMUs. Additional advantages of the proposed model include monotonicity, units invariance and output translation invariance. Two numerical examples demonstrate the practicality and superiority of the new model.  相似文献   

19.
The study of mechanical systems with uncertain parameters is gaining increasing interest in the field of system analysis to provide an expedient model for the prediction of the system behavior. Making use of the Transformation Method, the uncertain parameters of the system are modeled by fuzzy numbers in contrast to random numbers used in stochastic approaches. As a result of this analysis, a quantification of the overall uncertainty of the system outputs, including a worst-case scenario, is obtained. The inputs of the resulting fuzzy-valued model are a priori uncorrelated but after the uncertainties are propagated through the model, interdependency (or interaction) between the outputs may arise. If such interdependency is neglected, a misinterpretation of the results may occur. For example, in the case of applying uncertainty analysis in the early design phase of a product to determine the relevant design-parameter space, the interdependency between the design variables may reduce significantly the available part of the design space. This paper proposes a measure of interdependency between the uncertain system outputs. The interdependency index can be derived by a postprocessing of the data gained by the analysis with the Transformation Method. Such information can be obtained by a negligible amount of extra computation time.  相似文献   

20.
Directional distance function (DDF) is a recognized technique for measuring efficiency while incorporating undesirable outputs. This approach allows for desirable outputs to be expanded while undesirable outputs are contracted simultaneously. A drawback of the DDF approach is that the direction vector to the production boundary is fixed arbitrarily, which may not provide the best efficiency measure. Therefore, this study extends the previous framework of efficiency analysis to introduce a new slacks-based measure of efficiency called the scale directional distance function (SDDF) approach. This new approach determines the optimal direction to the frontier for each unit of analysis and provides dissimilar expansion and contraction factors to achieve a more reasonable eco-efficiency score. This new approach is employed to measure the eco-efficiency of the Malaysian manufacturing sector. In addition, the paper demonstrates the use of the new approach to establish target values for the reduction/expansion of outputs in order for the inefficient DMUs to achieve full eco-efficiency. The results indicate that Melaka, Pulau Pinang, Negeri Sembilan, Sabah, Sarawak and Labuan have attained full eco-efficiency while Terengganu is the least eco-efficient. The overall eco-efficiency of the manufacturing sector in Malaysia is 80.5 % with wide variations across the states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号