首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 666 毫秒
1.
Cross-efficiency evaluation is a commonly used approach for ranking decision-making units (DMUs) in data envelopment analysis (DEA). The weights used in the cross-efficiency evaluation may sometimes differ significantly among the inputs and outputs. This paper proposes some alternative DEA models to minimize the virtual disparity in the cross-efficiency evaluation. The proposed DEA models determine the input and output weights of each DMU in a neutral way without being aggressive or benevolent to the other DMUs. Numerical examples are tested to show the validity and effectiveness of the proposed DEA models and illustrate their significant role in reducing the number of zero weights.  相似文献   

2.
The concept of efficiency in data envelopment analysis (DEA) is defined as weighted sum of outputs/weighted sum of inputs. In order to calculate the maximum efficiency score, each decision making unit (DMU)’s inputs and outputs are assigned to different weights. Hence, the classical DEA allows the weight flexibility. Therefore, even if they are important, the inputs or outputs of some DMUs can be assigned zero (0) weights. Thus, these inputs or outputs are neglected in the evaluation. Also, some DMUs may be defined as efficient even if they are inefficient. This situation leads to unrealistic results. Also to eliminate the problem of weight flexibility, weight restrictions are made in DEA. In our study, we proposed a new model which has not been published in the literature. We describe it as the restricted data envelopment analysis ((ARIII(COR))) model with correlation coefficients. The aim for developing this new model, is to take into account the relations between variables using correlation coefficients. Also, these relations were added as constraints to the CCR and BCC models. For this purpose, the correlation coefficients were used in the restrictions of input–output each one alone and their combination together. Inputs and outputs are related to the degree of correlation between each other in the production. Previous studies did not take into account the relationship between inputs/outputs variables. So, only with expert opinions or an objective method, weight restrictions have been made. In our study, the weights for input and output variables were determined, according to the correlations between input and output variables. The proposed new method is different from other methods in the literature, because the efficiency scores were calculated at the level of correlations between the input and/or output variables.  相似文献   

3.
In a Data Envelopment Analysis model, some of the weights used to compute the efficiency of a unit can have zero or negligible value despite of the importance of the corresponding input or output. This paper offers an approach to preventing inputs and outputs from being ignored in the DEA assessment under the multiple input and output VRS environment, building on an approach introduced in Allen and Thanassoulis (2004) for single input multiple output CRS cases. The proposed method is based on the idea of introducing unobserved DMUs created by adjusting input and output levels of certain observed relatively efficient DMUs, in a manner which reflects a combination of technical information and the decision maker’s value judgements. In contrast to many alternative techniques used to constrain weights and/or improve envelopment in DEA, this approach allows one to impose local information on production trade-offs, which are in line with the general VRS technology. The suggested procedure is illustrated using real data.  相似文献   

4.
Wu  Jie  Xia  Panpan  Zhu  Qingyuan  Chu  Junfei 《Annals of Operations Research》2019,275(2):731-749

China’s rapid development in economy has intensified many problems. One of the most important issues is the problem of environmental pollution. In this paper, a new DEA approach is proposed to measure the environmental efficiency of thermoelectric power plants, considering undesirable outputs. First, we assume that the total amount of undesirable outputs of any particular type is limited and fixed to current levels. In contrast to previous studies, this study requires fixed-sum undesirable outputs. In addition, the common equilibrium efficient frontier is constructed by using different input/output multipliers (or weights) for each different decision making unit (DMU), while previous approaches which considered fixed-sum outputs assumed a common input/output multiplier for all DMUs. The proposed method is applied to measure the environmental efficiencies of 30 thermoelectric power plants in mainland China. Our empirical study shows that half of the plants perform well in terms of environmental efficiency.

  相似文献   

5.
Data envelopment analysis (DEA), which is used to determine the efficiency of a decision-making unit (DMU), is able to recognize the amount of input congestion. Moreover, the relative importance of inputs and outputs can be incorporated into DEA models by weight restrictions. These restrictions or a priori weights are introduced by the decision maker and lead to changes in models and efficiency interpretation. In this paper, we present an approach to determine the value of congestion in inputs under the weight restrictions. Some discussions show how weight restrictions can affect the congestion amount.  相似文献   

6.
It is well known that super-efficiency data envelopment analysis (DEA) approach can be infeasible under the condition of variable returns to scale (VRS). By extending of the work of Chen (2005), the current study develops a two-stage process for calculating super-efficiency scores regardless whether the standard VRS super-efficiency mode is feasible or not. The proposed approach examines whether the standard VRS super-efficiency DEA model is infeasible. When the model is feasible, our approach yields super-efficiency scores that are identical to those arising from the original model. For efficient DMUs that are infeasible under the super-efficiency model, our approach yields super-efficiency scores that characterize input savings and/or output surpluses. The current study also shows that infeasibility may imply that an efficient DMU does not exhibit super-efficiency in inputs or outputs. When infeasibility occurs, it can be necessary that (i) both inputs and outputs be decreased to reach the frontier formed by the remaining DMUs under the input-orientation and (ii) both inputs and outputs be increased to reach the frontier formed by the remaining DMUs under the output-orientation. The newly developed approach is illustrated with numerical examples.  相似文献   

7.
Super-efficiency in DEA by effectiveness of each unit in society   总被引:1,自引:0,他引:1  
One of the most important topics in management science is determining the efficiency of Decision Making Units (DMUs). The Data Envelopment Analysis (DEA) technique is employed for this purpose. In many DEA models, the best performance of a DMU is indicated by an efficiency score of one. There is often more than one DMU with this efficiency score. To rank and compare efficient units, many methods have been introduced under the name of super-efficiency methods. Among these methods, one can mention Andersen and Petersen’s (1993) [1] super-efficiency model, and the slack-based measure introduced by Tone (2002) [4]. Each of the methods proposed for ranking efficient DMUs has its own advantages and shortcomings. In this paper, we present a super-efficiency method by which units that are more effective and useful in society have better ranks. In fact, in order to determine super-efficiency by this method, the effectiveness of each unit in society is considered rather than the cross-comparison of the units. To do so, we divide the inputs and outputs into two groups, desirable and undesirable, at the discretion of the manager, and assign weights to each input and output. Then we determine the rank of each DMU according to the weights and the desirability of inputs and outputs.  相似文献   

8.
In this paper we discuss the question: among a group of decision making units (DMUs), if a DMU changes some of its input (output) levels, to what extent should the unit change outputs (inputs) such that its efficiency index remains unchanged? In order to solve this question we propose a solving method based on Data Envelopment Analysis (DEA) and Multiple Objective Linear Programming (MOLP). In our suggested method, the increase of some inputs (outputs) and the decrease due to some of the other inputs (outputs) are taken into account at the same time, while the other offered methods do not consider the increase and the decrease of the various inputs (outputs) simultaneously. Furthermore, existing models employ a MOLP for the inefficient DMUs and a linear programming for weakly efficient DMUs, while we propose a MOLP which estimates input/output levels, regardless of the efficiency or inefficiency of the DMU. On the other hand, we show that the current models may fail in a special case, whereas our model overcomes this flaw. Our method is immediately applicable to solve practical problems.  相似文献   

9.
An underlying assumption in DEA is that the weights coupled with the ratio scales of the inputs and outputs imply linear value functions. In this paper, we present a general modeling approach to deal with outputs and/or inputs that are characterized by nonlinear value functions. To this end, we represent the nonlinear virtual outputs and/or inputs in a piece-wise linear fashion. We give the CCR model that can assess the efficiency of the units in the presence of nonlinear virtual inputs and outputs. Further, we extend the models with the assurance region approach to deal with concave output and convex input value functions. Actually, our formulations indicate a transformation of the original data set to an augmented data set where standard DEA models can then be applied, remaining thus in the grounds of the standard DEA methodology. To underline the usefulness of such a new development, we revisit a previous work of one of the authors dealing with the assessment of the human development index on the light of DEA.  相似文献   

10.
Data envelopment analysis (DEA) measures the production performance of decision-making units (DMUs) which consume multiple inputs and produce multiple outputs. Although DEA has become a very popular method of performance measure, it still suffers from some shortcomings. For instance, one of its drawbacks is that multiple solutions exist in the linear programming solutions of efficient DMUs. The obtained weight set is just one of the many optimal weight sets that are available. Then why use this weight set instead of the others especially when this weight set is used for cross-evaluation? Another weakness of DEA is that extremely diverse or unusual values of some input or output weights might be obtained for DMUs under assessment. Zero input and output weights are not uncommon in DEA. The main objective of this paper is to develop a new methodology which applies discriminant analysis, super-efficiency DEA model and mixed-integer linear programming to choose suitable weight sets to be used in computing cross-evaluation. An advantage of this new method is that each obtained weight set can reflect the relative strengths of the efficient DMU under consideration. Moreover, the method also attempts to preserve the original classificatory result of DEA, and in addition this method produces much less zero weights than DEA in our computational results.  相似文献   

11.
This paper discusses the “inverse” data envelopment analysis (DEA) problem with preference cone constraints. An inverse DEA model can be used for a decision making unit (DMU) to estimate its input/output levels when some or all of its input/output entities are revised, given its current DEA efficiency level. The extension of introducing additional preference cones to the previously developed inverse DEA model allows the decision makers to incorporate their preferences or important policies over inputs/outputs into the production analysis and resource allocation process. We provide the properties of the inverse DEA problem through a discussion of its related multi-objective and weighted sum single-objective programming problems. Numerical examples are presented to illustrate the application procedure of our extended inverse DEA model. In particular, we demonstrate how to apply the model to the case of a local home electrical appliance group company for its resource reallocation decisions.  相似文献   

12.
We provide an alternative framework for solving data envelopment analysis (DEA) models which, in comparison with the standard linear programming (LP) based approach that solves one LP for each decision making unit (DMU), delivers much more information. By projecting out all the variables which are common to all LP runs, we obtain a formula into which we can substitute the inputs and outputs of each DMU in turn in order to obtain its efficiency number and all possible primal and dual optimal solutions. The method of projection, which we use, is Fourier–Motzkin (F–M) elimination. This provides us with the finite number of extreme rays of the elimination cone. These rays give the dual multipliers which can be interpreted as weights which will apply to the inputs and outputs for particular DMUs. As the approach provides all the extreme rays of the cone, multiple sets of weights, when they exist, are explicitly provided. Several applications are presented. It is shown that the output from the F–M method improves on existing methods of (i) establishing the returns to scale status of each DMU, (ii) calculating cross-efficiencies and (iii) dealing with weight flexibility. The method also demonstrates that the same weightings will apply to all DMUs having the same comparators. In addition it is possible to construct the skeleton of the efficient frontier of efficient DMUs. Finally, our experiments clearly indicate that the extra computational burden is not excessive for most practical problems.  相似文献   

13.
The Charnes, Cooper and Rhodes (CCR) DEA model and its linear forms maximise the efficiency of the assessed decision making unit (DMU) and, at the same time, the ratio of this efficiency to the maximum efficiency taken across all the DMUs, the latter naturally always being equal to one. It has been shown recently that, in the presence of absolute weight bounds, these models may not maximise the ratio of these efficiencies, a fact that may cause problems with the interpretation and use of the optimal primal and dual solutions. For example, an inefficient DMU may have greater efficiency than its target unit for some weights. This paper investigates the problem in greater detail; it shows that, in the linear DEA model maximising the total virtual output of the assessed DMU, the problem occurs only if upper bounds are imposed on the output weights. A similar result is established for the model that minimises the total virtual input.  相似文献   

14.
This paper develops a new radial super-efficiency data envelopment analysis (DEA) model, which allows input–output variables to take both negative and positive values. Compared with existing DEA models capable of dealing with negative data, the proposed model can rank the efficient DMUs and is feasible no matter whether the input–output data are non-negative or not. It successfully addresses the infeasibility issue of both the conventional radial super-efficiency DEA model and the Nerlove–Luenberger super-efficiency DEA model under the assumption of variable returns to scale. Moreover, it can project each DMU onto the super-efficiency frontier along a suitable direction and never leads to worse target inputs or outputs than the original ones for inefficient DMUs. Additional advantages of the proposed model include monotonicity, units invariance and output translation invariance. Two numerical examples demonstrate the practicality and superiority of the new model.  相似文献   

15.
Data envelopment analysis (DEA) is designed to maximize the efficiency of a given decision-making unit (DMU) relative to all other DMUs by the choice of a set of input and output weights. One strength of the original models is the absence of any need of a priori information about the process of transforming inputs into outputs. However, in the practical application of DEA models, this strength has also become a weakness. Incorporation of process knowledge is more a norm than an exception in practice, and typically involves placing constraints on the input and/or output weights. New DEA formulations have evolved to address this issue. However, existing formulations for weight restrictions may underestimate relative efficiency or even render a problem infeasible. A new model formulation is introduced to address this issue. This formulation represents a significant improvement over existing DEA models by providing a generalized, comprehensive treatment for weight restrictions.  相似文献   

16.
In this paper, the inverse data envelopment analysis (DEA) with the preference of cone constraints will be discussed in a way that in the decision-making units, the undesirable inputs and outputs exist simultaneously. Supposing that the efficiency level does not change, if the unit under assessment increases the level of the desirable outputs and decreases the level of the undesirable outputs, how will it affect the amount of the desirable input level and the undesirable input level? To answer this question, the application of the inverse DEA with preference of cone constraints is suggested. The suggested approach, while maintaining the efficiency level, increases the level of its undesirable input and decreases the level of its desirable input by selection of strongly efficient solutions or some weakly efficient solutions of the multiple objective linear programming (MOLP) model. While maintaining the efficiency level, the suggested approach by selection of strongly efficient solution or some of the weakly efficient solutions of the MOLP model can increase the undesirable input level and decrease the desirable input level. Similarly, the suggested approach can be applied if the decision-making unit increases its undesirable input level and decreases the desirable input level so that the undesirable output level decreases and the desirable output level increases while maintaining the efficiency level. As an illustration, two numerical examples are rendered.  相似文献   

17.
Efficiency could be not only the ratio of weighted sum of outputs to that of inputs but also that of weighted sum of inputs to that of outputs. When the previous efficiency measures the best relative efficiency within the range of no more than one, the decision-making units (DMUs) who get the optimum value of one perform best among all the DMUs. If the previous efficiency is measured within the range of no less than one, the DMUs who get the optimum value of one perform worst among all the DMUs. When the later efficiency is measured within the range of no more than one, the DMUs who get the optimum value of one perform worst among all the DMUs. If the later efficiency is measured within the range of no less than one, the DMUs who get the optimum value of one perform best among all the DMUs. This paper mainly studies an interval DEA model with later efficiency, in which efficiency is measured within the range of an interval, whose upper bound is set to one and the lower bound is determined by introducing a virtual ideal DMU, whose performance is definitely superior to any DMUs. The efficiencies, obtained from interval DEA model, turn out to be all intervals and are referred to as interval efficiencies, which combine the best and the worst relative efficiency in a reasonable manner to give an overall assessment of performances for all DMUs. Assessor's preference information on input and output weights is also incorporated into interval DEA model reasonably and conveniently. Through an example, some differences are found from the ranking results obtained from interval DEA model and bounded DEA model using the Hurwicz criterion approach to rank the interval efficiencies.  相似文献   

18.
The inverse DEA (Data Envelopment Analysis) method is primarily used to analyse the changing relationship between the inputs and outputs of a DMU (Decision-Making Unit) when its efficiency is kept constant or set to a target value. However, the existing inverse DEA method cannot be applied directly to estimate all the changing relationships. For example, the existing DEA models fail to estimate the input variations when the supervisor wants to maintain the DMU’s output-oriented efficiency during the downscaling of production. This paper analyses all the possible changing relationships that need to be solved by the inverse DEA method and develops different models for both the output and input orientations, accomplishing the extension and integration of the inverse DEA model. For illustration of our results, a numerical example is given.  相似文献   

19.
《Optimization》2012,61(11):2441-2454
Inverse data envelopment analysis (InDEA) is a well-known approach for short-term forecasting of a given decision-making unit (DMU). The conventional InDEA models use the production possibility set (PPS) that is composed of an evaluated DMU with current inputs and outputs. In this paper, we replace the fluctuated DMU with a modified DMU involving renewal inputs and outputs in the PPS since the DMU with current data cannot be allowed to establish the new PPS. Besides, the classical DEA models such as InDEA are assumed to consider perfect knowledge of the input and output values but in numerous situations, this assumption may not be realistic. The observed values of the data in these situations can sometimes be defined as interval numbers instead of crisp numbers. Here, we extend the InDEA model to interval data for evaluating the relative efficiency of DMUs. The proposed models determine the lower and upper bounds of the inputs of a given DMU separately when its interval outputs are changed in the performance analysis process. We aim to remain the current interval efficiency of a considered DMU and the interval efficiencies of the remaining DMUs fixed or even improve compared with the current interval efficiencies.  相似文献   

20.
Data envelopment analysis (DEA) is popularly used to evaluate relative efficiency among public or private firms. Most DEA models are established by individually maximizing each firm's efficiency according to its advantageous expectation by a ratio. Some scholars have pointed out the interesting relationship between the multiobjective linear programming (MOLP) problem and the DEA problem. They also introduced the common weight approach to DEA based on MOLP. This paper proposes a new linear programming problem for computing the efficiency of a decision-making unit (DMU). The proposed model differs from traditional and existing multiobjective DEA models in that its objective function is the difference between inputs and outputs instead of the outputs/inputs ratio. Then an MOLP problem, based on the introduced linear programming problem, is formulated for the computation of common weights for all DMUs. To be precise, the modified Chebychev distance and the ideal point of MOLP are used to generate common weights. The dual problem of this model is also investigated. Finally, this study presents an actual case study analysing R&D efficiency of 10 TFT-LCD companies in Taiwan to illustrate this new approach. Our model demonstrates better performance than the traditional DEA model as well as some of the most important existing multiobjective DEA models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号