首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Heterometallic Cluster Complexes of the Types Re2(μ-PR2)(CO)8(HgY) and ReMo(μ-PR2)(η5-C5H5)(CO)6(HgY) (R = Ph, Cy; Y = Cl, W(η5-C5H5)(CO)3) Dinuclear complexes Re2(μ-H)(μ-PR2)(CO)8 and ReMo(μ-H)(μ-PR2)(η5-C5H5)(CO)6 (R = phenyl, cyclohexyl) were deprotonated and reacted as anions with HgCl2 to compounds of the both types Re2(μ-PR2)(CO)8HgCl) and ReMo(μ-PR2)(η5-C5H5)(CO)6(HgCl). The heterometallic three-membered cluster complexes correspond to an isolobal exchange of a proton against a cationic HgCl+ group. For one of the products ReMo(μ-PCy2)(η5-C5H5)(CO)6(HgCl) has been shown its conversion with NaW(η5-C5H5)(CO)3 to ReMo(μ-PCy2)(η5-C5H5)(HgW(η5-C5H5)(CO)3) under substitution of the chloro ligand, par example. The newly prepared compounds were characterized by means of IR, UV/VIS and 31P NMR data. A complete determination of the molecular structure by single crystal analyses was done in the case of Re2(μ-PCy2)(CO)8(HgCl) and of ReMo(μ-PCy2)(η5-C5H5)(CO)6(HgCl) which both are dimer because of the presence of an asymmetric dichloro bridge, and of ReMo(μ-PCy2)(η5-C5H5)(CO)6(HgW(η5-C5H5)(CO)3). The structural study illustrates through comparison the influence of various metal types on an interaction between centric and edge-bridged frontier orbitals in three-membered metal rings.  相似文献   

2.
The reaction of Na[η5-C5H5Fe(CO)2] with large excess of SO2 in THF at ?78°C followed by warming to room temperature affords an iron—dithionite complex, (η5-C5H5)(CO)2FeS(O)2S(O)2Fe(CO)25-C5H5).  相似文献   

3.
Evidence for (η5-C5H5)Fe(Ph2PCH2CH2PPh2)(CHO) as an intermediate in the reduction of [(η5-C5H5)Fe(Ph2PCH2CH2PPh2)CO]PF6 to (η5-C5H5)Fe(CO)H(Ph2PCH2CH2PPh2) and for a metal-carbonyl hydride-formyl equilibrium is described.  相似文献   

4.
The course of the reaction of (η5-C5H5)Fe(CO)21-C5H5) with phosphorus donor ligands depends strongly on the nature of the ligand; products derived from an Arbuzov-like rearrangement or from reduction have been found as well as the expected simple substitution product. The dynamic PMR behavior of (η5-C5H5)Fe(CO) (P(OPh)3) (η1-C5H5) has been examined.  相似文献   

5.
The reaction of (η5-C5H5)W(CO)2(NO), 6W, with P(CH3)3 proceeds rapidly at 25°C to give (η5-C5H5)W(CO)(NO)[P(CH3)3], 7W. The rate of formation of 7W was found to be 4.48 × 10?2M?1 [6W] [P(CH3)3] at 25.0°c in THF. In neat P(CH3)3 at ?23°C, 6W is converted to (η1-C5H5)W(CO)2(NO)[P(CH3)3]2, 8W. In dilute solution, 8W decomposes to initially give a 2:1 mixture of 6W and 7W. The mixture is then converted to 7W. The reaction of (η5-C5H5)Mo(CO)(NO), 6Mo, with P(CH3)3 is 6.1 times faster than that of the tungsten analog.  相似文献   

6.
The crystal structure of the molybdenum half sandwich alkali salt [Li(TMEDA)2][Mo(η5-C5H5)(CO)3] shows the occurrence of a separated ion pair in the solid state. Furthermore, the crystal structures of the long known organotin complexes [Mo(η5-C5H5)(SnMe3)(CO)3], [{Mo(η5-C5H5)(CO)3}2SnMe2] and [Mo(η5-C5H5)(SnMeCl2)(CO)3] have been recorded. The chlorination of [Mo(η5-C5H5)(SnMe3)(CO)3] with SnCl4 is presented as an improved synthetic access to [Mo(η5-C5H5)(SnMeCl2)(CO)3]. Finally, the reaction of Li[Mo(η5-C5H5)(CO)3] with tBu2(Cl)Sn–Sn(Cl)tBu2 leads to the novel molybdenum distannane complex [Mo(η5-C5H5){SntBu2-Sn(Cl)tBu2}(CO)3], which is fully characterized by NMR, elemental and X-ray analysis.  相似文献   

7.
The reactions of [Fe2(η-C5H5)2(CO)2(L)(CNMe)] (L  CO or CNME) with HgX2 (X  Cl, Br or I) give [Fe(η-C5H5)(CO)2HgX] and [Fe(η-C5H5)(L)-(CNMe)X] as the sole products in ca. quantitative yields; this is consistent with the previously proposed mechanism for the reactions of electrophiles with polynuclear metal carbonyl derivatives.  相似文献   

8.
The complex (η5-C5H4CH3)Mn(NO)(PPh3)I has been prepared by the reaction of NaI with [(η5-C5H4CH3)Mn(NO)(CO)(PPh3)]+ and also by the reaction of [(η5-C5H4CH3)Mn(NO)(CO)2]+ with NaI followed by PPh3. This iodide compound reacts with NaCN to yield (η5-C5H4CH3)Mn(NO)(PPh3)CN which is ethylated by [(C2H5)3O]BF4 to yield [(η5-C5H4CH3)Mn(NO)(PPh3)(CNC2H5)]+. Both [(η5-C5H4CH3)Mn(NO)(CO)2]+ and [(η5-C5H4CH3)Mn(NO)(PPh3)(CO)]+ react with NaCN to yield [(η5-C5H4CH3)Mn(NO)(CN)2]?. This anion reacts with Ph3SnCl to yield cis-(η5-C5H4CH3)Mn(NO)(CN)2SnPh3 and with [(C2-H5)3O]BF4 to yield [(η5-C5H4CH3)Mn(NO)(CNC2H5)2]+. The reaction of (η5-C5-H4CH3)Mn(NO)(PPh3)I with AgBF4 in acetonitrile yields [(η5-C5H4CH3)Mn-(NO)(PPh3)(NCCH3)]+. The complex (η5-C5H4CH3)Mn(NO)(CO)I, produced in the reaction of [(η5-C5H4CH3)Mn(NO)(CO)2]+ with NaI, is not stable and decomposes to the dimeric complex (η5-C5H4CH3)2Mn2(NO)3I for which a reasonable structure is proposed. Similar dimers can be prepared from the other halide salts. The reaction of (η7-C7H7)Mo(CO)(PPh3)I with NaCN yields (η7-C7-H7)Mo(CO)(PPh3)CN which is ethylated by [(C2H5)3O]BF4 to yield [(η7-C7H7)-Mo(CO)(PPh3)(CNC2H5)]+. The interaction of this molybdenum halide complex with AgBF4 in acetonitrile and pyridine yields [(η7-C7H7)Mo(CO)(PPh3)-(NCCH3)]+ and [(η7-C7H7)Mo(CO)(PPh3)(NC5H5)]+, respectively. Both (η5-C5-H4CH3)Mn(NO)(PPh3)I and (η7-C7H7)Mo(CO)(PPh3)I are oxidized by NOPF6 to the respective 17-electron cations in acetonitrile at ?78°C but revert to the neutral halide complex at room temperature. This result is supported by electrochemical data.  相似文献   

9.
Reaction of chlorodiphenylphosphine with (η5-C5H5)(η7-C7H6Li)Ti gave (η5-C5H5)[η7-C7H6P(C6H5)2]Ti in good yields. This novel phosphinetitanium (II) derivative displaced one carbonyl of metal carbonyl complexes [Ni(CO)4, Fe(CO)5 and Mo(CO)6] to afford heterobimetallic complexes containing low valent titanium, and behaved as a poor electron-donating phosphine.  相似文献   

10.
The complex η55-(CO)3Mn(C5H4-C5H4)(CO)2Fe-η15-C5H4Mn(CO)3 was synthesized by the reaction of η5-Cp(CO)2Fe-η15-C5H4Mn(CO)3 with BunLi (THF, ?78 °C) and then with anhydrous CuCl2. The complex μ-(C≡C)[C5H4(CO)2Fe-η15-C5H4Mn(CO)3]2 was prepared by the reaction of η5-IC5H4(CO)2Fe-η15-C5H4Mn(CO)3 with Me3SnC≡CSnMe3 (2:1) in the presence of Pd(MeCN)2Cl2.  相似文献   

11.
The ethyne-derived demetallocycle [Ru2(CO) (μ-CO){μ-C(O)C2H2}(η-C5H5)2 isomerises in boiling toluene to yield the μ-vinylidene complex [Ru2(CO)2(μ-CO)(μ-CCH2) (η-C5H5)2], which on protonation with dry HBF4 provides the μ-carbyne complex [Ru2(CO)2(μ-CO)(μ-CCH3)(η-C5H5)2][BF4]; the structure of each product has been determined by X-ray diffraction. The μ-carbyne cation is attacked by hydride to produce the μ-methylcarbene complex [Ru2(CO)2(μ-CO)(μ-CHCH3)(η-C5H5)2].  相似文献   

12.
Reaction of (η5-C5H5)(CO)2FeNa with ClSiMe2-SiPh3 yields (η5-C5H5)-Fe(CO)2SiMe2-SiPh3. The crystal structure of the compound has been determined by X-ray diffraction. The SiSi bond distance is 2.374(1) Å, which is longer by 0.018 Å than that in Me3Si-SiPh3. This difference is in agreement with spectroscopic data, and is presumably due to the σ-donor property of the silyl group. The SiFe bond length is 2.346(1) Å.  相似文献   

13.
On the Reactivity of Disilylarsenido Iron Complexes towards Carbonyl Chlorides: The First Arsaalkenyl- and Diacylarsenido Complexes. X-Ray Structure Analysis of Z-[(η5-C5H5)(CO)2Fe? As?C(OSiMe3)(t-Bu)] The reaction of equimolar amounts of (η5-C5H5)(CO)2FeAs(SiMe3)2 ( 1a ) with the carbonyl chlorides RC(O)Cl (R = t-Bu, 2,4,6-Me3C6H2 and 2,4,6-t-Bu3C6H2) yields the arsaalkenyl complexes Z-[(η5-C5H5)(CO)2Fe? As?;C(OSiMe3)R ( 2–4 )]. The diacylarsenido complexes (η5-C5H5)(CO)2Fe? As[C(O)R]2 ( 5, 6 ) are generated by treatment of 1a with two equivalents of pivaloyl chloride or mesitoyl chloride, respectively. The As?C-double bond length of 2 (1.821(2) Å) was determined by single crystal x-ray analysis.  相似文献   

14.
By reaction of (η-C5H5)W(CO)3SH with Os3(CO)11(NCCH3) the (η5-C5H5)W(CO)3S unit is introduced into the trinuclear osmium cluster through the sulfur atom. The primary reaction product (μ2-H)Os3(CO)102-SW(η5-C5H5)(CO)3] can be converted thermally into the pyramidal Os3SW cluster (η5-C5H5)(CO)11, whose structure was solved by a single crystal X-ray structure analysis. The molecule has a pyramidal Os3SW skeleton with, in a first approximation a planar Os3S basis. Only two of the three OsOs distances are in accordance with chemical bonds.  相似文献   

15.
The reaction between Fe(CO)5, and group V donor ligands L, (L  PPh3, AsPh3, SbPh3, PMePh2, PMe2Ph, Asme2Ph, P(C6H11)3, P(n-Bu)3, P(i-Bu)3, P(OPh)3, P(OEt)3, P(OMe)3) in the presence of [(η5-C5Me5Fe(CO)2]2 (R  H, Me) or [(η5-C5Me5)Fe(CO)2]2 as catalyst in refluxing toluene, rapidly gives the complexes Fe(CO)4L in yields > 85%. The reaction rate is essentially independent of the nature of L for [(η5-C5Me5)Fe(CO)2]2 as catalyst. For the other catalysts, the rate is influenced predominantly by the steric properties of L. These results are interpreted in terms of the interaction between the catalyst and the ligand L to give derivatives of the type (η5-C5H4R)2Fe2,(CO)3,(L). These derivatives were also found to catalyse the reaction between Fe(CO)5, and L. The complexes [(η-C5H4R)Fe(CO)2]2 (R  H, Me) and [(η5-C5Me5)Fe(CO)2]2 also catalyse the reaction between Mn2(CO)10 and PPh3 to give Mn2(CO)8- PPh3)2 in > 80% yield.  相似文献   

16.
Transition Metal-substituted Acylphosphanes and Phosphaalkenes. 22. Insertions of Hexafluoroacetone into the PX-Bond of Metallophosphanes (η5-C5Me5)(CO)2M? PX2 (M = Fe, Ru; X = Me3Si, Cl). Structure Determination of (η5-C5Me5)(CO)2Fe? P(SiMe3)C(CF3)2(OSiMe3) Reaction of the metallophosphanes (η5-C5Me5)(CO)2M? P(SiMe3)2 ( 1a : M = Fe; 1b : M = Ru) with hexafluoroacetone (HFA) afforded the complexes (η5-C5Me5)(CO)2M? P(SiMe3)C(CF3)2(OSiMe3) ( 2a, b ). The attempted synthesis of a metallophosphaalkene from 2a by thermal elimination of hexamethyldisiloxane failed. The acid catalyzed hydrolysis of 2a afforded compound (η5-C5Me5) · (CO)2Fe? P(H)C(CF3)2(OSiMe3) ( 3 ). Hexafluoracetone and (η5-C5Me5)(CO)2Fe? PCl2 ( 4 ) under-went reaction to give the metallochlorophosphan (η5-C5Me5) · (CO)2Fe? P(Cl)? O? C(CF3)2Cl ( 5 ). Constitutions and configurations of the compounds ( 2–5 ) were established by elemental analyses and spectroscopic data (IR, 1H-, 13C, 19F-, 29Si-, 31P-NMR, MS). The molecular structure of 2a was determined by x-ray diffraction analysis.  相似文献   

17.
Infrared spectroscopic experiments using polyvinyl chloride film matrices at 12–200 K have shown for the first time that the photoinduced decarbonylation of Fe(η5-C5H5)(CO)2(COCH3) is thermally reversible, and that the photolysis of Fe(η5-C5H5)(CO)2(CH3) leads to the reversible formation of the new species Fe(η5-C5H5)(CO)(CH3).  相似文献   

18.
The reactions of [Co(η-C5H5)(L)I2] with Na[S2CNR2] (R = alkyl or phenyl) give [Co(η-C5H5)(I)(S2CNR2)] (I) when L = CO and [Co(η-C5H5)(L)(S2CNR2)]I (II) when L is a tertiary phosphine, phosphite or stibine, or organo-isocyanide ligand. In similar reactions [Co(η-C5H5)(CO)(C3F7)I] gives [Co(η-C5H5)(C3F7)(S2CNMe2)] and [Mn(η-MeC5H4)(CO)2(NO)]PF6 forms [Mn(η-MeC5H4)(NO)(S2CNR2)]. The iodide ligands in I may be displaced by L, to give II, or by other ligands such as [CN]?, [NCS]?, H2O or pyridine whilst SnCl2 converts it to SnCl2I. The iodide counter-anion in II may be replaced by others to give [BPh4]?, [Co(CO)4]? or [NO3]? salts. However [CN]? acts differently and displaces (PhO)3P from [Co(η-C5H5){P(OPh)3}(S2CNMe)]I to give [Co(η-C5H5)(CN)(S2CNMe2)] which may be alkylated reversibly by MeI and irreversibly by MeSO3F to [Co(η-C5H5)(CNMe)(S2CNMe2)]+ salts. Conductivity measurements suggest that solutions of I in donor solvents are partially ionized with the formation of [Co(η-C5H5)(solvent)(S2CNR2)]+ I? species. The IR and 1H NMR spectra of the various complexes are reported. They are consistent with pseudo-octahedral “pianostool” molecular structures in which the bidentate dithiocarbamate ligands are coordinated to the metal atoms through both sulphur atoms.  相似文献   

19.
UV irradiation of [Ru2(CO)4(η-C5H5)2] yields the tri- and tetra-ruthenium complexes [Ru2(CO)4(η-C5H5){η-C5H4Ru(CO)2(η-C5H5)}] and [Ru4(CO)63-C5H4)2(η-C5H5)2]. The μ3-C5H4 ligand in the latter has been characterised through an X-ray diffraction study on [Ru4(CO)5{P(OMe)3}(μ3-C5H4)2(η-C5H5)2].  相似文献   

20.
Ultraviolet irradiation of deaerated solutions of [Mo(η5-C5H5)2H2] results in elimination of H2 and generation of [Mo(η5-C5H5)2]. The transient molybdenocene can be trapped with substrates such as CO, C2H2, and PR3 to yield stable adducts, but in the absence of substrate, oligomerization to the previously described [Mo(η5-C5H5)2]x occurs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号