首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 287 毫秒
1.
Reactions of Silylphosphines with Sulphur We report about reactions of Me2P? SiMe3 2 , MeP(SiMe3)2 3 , (Me3Si)3P 4 , P2(SiMe3)4 5 , and (Me3Si)3P7 1 with elemental sulphur. Without using a solvent 2 reacts very vigorously. The reactions with 3 and 4 show less reactivity which is even more reduced with 5 and 1 . With equivalent amounts of sulphur the reactions with 2 , 3 , 4 lead to compounds with highest content of sulphur. These compounds are Me3SiS? P(S)Me2 9 from 2 , (Me3SiS)2P(S)Me 13 from 3 and (Me3SiS)3P(S) 16 from 4 . Besides, the by-products (Me3Si)2S 8 , P2Me4 7 , and Me2P(S)? P(S)Me2 11 can be obtained. The reactions of silylphosphines in a pentane solution run much slower so that the formation of intermediates can be observed. Reaction with 2 yields Me3SiS? PMe2 6 and Me2P(S)PMe2 10 , which lead to the final products in a further reaction with sulphur. From 3 (Me3SiS)(Me3Si)PMe 14 and (Me3SiS)2PMe 12 can be obtained which react with sulphur to (Me3SiS)2P(S)Me 13. 4 leads to the intermediates (Me3SiS)(Me3Si)2P 18 , (Me3SiS)2(Me3Si)P 17 , (Me3SiS)3P 15 yielding (Me3SiS)3P(S) 16 with excess sulphur. Depending on the molar ratio (P2SiMe3)4 5 reacts to (Me3Si)2P? P(SSiMe3)(Sime3), (Me3SiS)(Me3Si)P? P(SSiMe3). (Diastereoisomer ratio 10:1), (Me3SiS)2P? P(SiMe3)2 and (Me3SiS)2P? P(SSiMe3)(Sime3). With the molar ratio 1:4 the reaction yields (Me3SiS)2P? P(SSiMe3)2 (main product), (Me3SiS)3P(S) and (Me3SiS)3P. All silylated silylphosphines tend to decompose under formation of (Me3Si)2S. (Me3Si)3P7 reacts with sulphur at 20°C (15 h) under decomposition of the P7-cage and formation of (Me3SiS)3P(S). The products of the reaction of 5 with sulphur in hexane solution (molar ratio more than 1:3) undergo readily further reactions at 60°C under cleavage of P? P bonds and splitting off (Me3Si)2S, leading to (Me3SiS)3P(S) and cage molecules like P4S3, P4S7, and P4S10 and P? S-polymers. (Me3SiS)3P(S) isi thermally unstable and decomposes to P4S10 and (Me3Si)2S. Sulphur-containing silylphosphines like (Me3SiS)P(S)Me2 react with HBr at ?78°C under formation of Me3SiBr (quantitative cleavage of the Si? S bond) and Me2P(S)SH, which reacts with HBr to produce H2S and Me2P(S)Br.  相似文献   

2.
The reaction of Me3SbCl2 and (Me2SnS)3 afforded the complex (Me3SbS)2Me2SnCl2 in high yields, whose molecular structure features both hypercoordinated tin and antimony atoms. In solution, (Me3SbS)2Me2SnCl2 undergoes a reversible dissociation and ligand interchange reaction to give Me3SbS, Me3SbCl2 and (Me2SnS)3.  相似文献   

3.
Silyldiazoalkanes Me3Si(LnM)CN2 (LnM = Me3Si, Me3Ge, Me3Sn, Me3Pb; Me3As, Me3Sb, Me3Bi) have been synthesized by three different routes: (a) reactions of the Me3SiCHN2 with metal amides LnMNR1R2 of Group IVB and VB elements, using Me3SnCl as catalyst; (b) reactions of the in situ prepared organolithium compound Me3SiC(Li)N2 with organometallic chlorides Me3MCl (M = Si, Ge); (c) tincarbon bond cleavage reaction of (Me3Sn)2CN2 with Me3SiN3, affording Me3SnN3, traces of bis(trimethylsilyl)diazomethane (Me3Si)CN2, trimethylsilyl(trimethylstannyl)diazomethane Me3Si(Me3Sn)CN2 and bis(trimethylsilyl)aminoisocyanide (Me3Si)2NNC as the major reaction products. IR and NMR data (1H, 13C, 29Si, 119Sn, 207Pb) of the new heterometal-diazoalkanes are reported and discussed in comparison to relevant compounds of the organometallic diazoalkane series.  相似文献   

4.
Attempts have been made to prepare salts with the labile tris(trimethylsilyl)chalconium ions, [(Me3Si)3E]+ (E=O, S), by reacting [Me3Si-H-SiMe3][B(C6F5)4] and Me3Si[CB] (CB=carborate=[CHB11H5Cl6], [CHB11Cl11]) with Me3Si-E-SiMe3. In the reaction of Me3Si-O-SiMe3 with [Me3Si-H-SiMe3][B(C6F5)4], a ligand exchange was observed in the [Me3Si-H-SiMe3]+ cation leading to the surprising formation of the persilylated [(Me3Si)2(Me2(H)Si)O]+ oxonium ion in a formal [Me2(H)Si]+ instead of the desired [Me3Si]+ transfer reaction. In contrast, the expected homoleptic persilylated [(Me3Si)3S]+ ion was formed and isolated as [B(C6F5)4] and [CB] salt, when Me3Si-S-SiMe3 was treated with either [Me3Si-H-SiMe3][B(C6F5)4] or Me3Si[CB]. However, the addition of Me3Si[CB] to Me3Si-O-SiMe3 unexpectedly led to the release of Me4Si with simultaneous formation of a cyclic dioxonium dication of the type [Me3Si-μO-SiMe2]2[CB]2 in an anion-mediated reaction. DFT studies on structure, bonding and thermodynamics of the [(Me3Si)3E]+ and [(Me3Si)2(Me2(H)Si)E]+ ion formation are presented as well as mechanistic investigations on the template-driven transformation of the [(Me3Si)3E]+ ion into a cyclic dichalconium dication [Me3Si-μE-SiMe2]22+.  相似文献   

5.
The reactivity of neodymium diiodide, NdI2 ( 1 ), towards organosilicon, ‐germanium and ‐tin halides has been investigated. Compound 1 readily reacts with Me3SiCl in DME to give trimethylsilane (6 %), hexamethyldisilane (4 %) and (Me3Si)2O (19 %). The reaction with Et3SiBr in THF results in formation of Et3SiSiEt3 (17 %) and Et3SiOBun (34 %). Alkylation of Me3SiCl with PrnCl in the presence of 1 in THF affords Me3SiPrn (10 %), Me3SiOBun (52 %) and Me3SiSiMe3 (1 %). The main product identified in the reaction mixture formed upon interaction of 1 with dichlorodimethylsilane Me2SiCl2 in THF is di‐n‐butoxydimethylsilane Me2Si(OBun)2 (54 %) together with minor amounts of Me2Si(OBun)Cl. The reaction of 1 with Me3GeBr under the same conditions produces Me3GeGeMe3 (44 %), Me3GeH (3 %), and Me3GeI (7 %). An analogous set of products was obtained in the reaction with Et3GeBr. Treatment of trimethyltin chloride with 1 causes reduction of the former to tin metal (74 %). Me3SnH (7 %) and hexamethyldistannane (11 %) were identified in the volatile products. The reaction of 1 with Me3SiI provides straightforward access to hepta‐coordinated NdI3(THF)4 ( 2 ), the structure of which was determined by X‐ray diffraction.  相似文献   

6.
Syntheses and Crystal Structure Analyses of Tetraalkyl Phosphonium, Arsonium, and Stibonium Triiodides The reaction of Me4EI (E?P, As), Me3EtSbI, Me2Et2SbI, MeEt3SbI, or Et4SbI with I2 in absence of solvent gives Me4PI3 (E?P, As), Me3EtSbI3, Me2Et2SbI3, MeEt3SbI3, or Et4SbI3. Me4SbI3 is formed in a reversible reaction by addition of I2 to (Me4Sb)3I8 or by reaction of a solution of Me4SbI in ethanol with I2 in benzene. The crystal structures of Me4EI3 (E?P, Sb), and Me3EtSbI3 and the syntheses of the novel compounds are reported.  相似文献   

7.
The (Me3Si)3C group causes very large steric hindrance to nucleophilic displacement at a silicon atom to which it is attached, and (Me3Si)3CSiMe2Cl is even less reactive than t-Bu3SiCl towards base. The compounds (Me3Si)3CSiMe2X (X = Cl, Br, or I) are cleaved by MeOH/MeONa to give (Me3Si)2CHSiMe2OMe, possibly via the silaolefin (Me3Si)2 CSiMe2, and the correspondLug (Me3Si)3 CSiPh2X compounds undergo the analogous reaction even more readily. The halides (Me3Si)3CSiR2X (X = Cl or Br) and (Me3Si)3CSiCl3 do not react with boiling alcoholic silver nitrate, but the iodides (Me3Si)3CSiR2I are rapidly attacked.  相似文献   

8.
The limits of steric crowding in organometallic metallocene complexes have been examined by studying the synthesis of [(C5Me5)3MLn] complexes as a function of metal in which L=Me3CCN, Me3CNC, and Me3SiCN. The bis(tert‐butyl nitrile) complexes [(C5Me5)3Ln(NCCMe3)2] (Ln=La, 1 ; Ce, 2 ; Pr, 3 ) can be isolated with the largest lanthanide metal ions, La3+, Ce3+, and Pr3+. The Pr3+ ion also forms an isolable mono‐nitrile complex, [(C5Me5)3Pr(NCCMe3)] ( 4 ), whereas for Nd3+ only the mono‐adduct [(C5Me5)3Nd(NCCMe3)] ( 5 ) was observed. With smaller metal ions, Sm3+ and Y3+, insertion of Me3CCN into the M? C(C5Me5) bond was observed to form the cyclopentadiene‐substituted ketimide complexes [(C5Me5)2Ln{NC(C5Me5)(CMe3)}(NCCMe3)] (Ln=Sm, 6 ; Y, 7 ). With tert‐butyl isocyanide ligands, a bis‐isocyanide product can be isolated with lanthanum, [(C5Me5)3La(CNCMe3)2] ( 8 ), and a mono‐isocyanide product with neodymium, [(C5Me5)3Nd(CNCMe3)] ( 9 ). Silicon–carbon bond cleavage was observed in reactions between [(C5Me5)3Ln] complexes and trimethylsilyl cyanide, Me3SiCN, to produce the trimeric cyanide complexes [{(C5Me5)2Ln(μ‐CN)(NCSiMe3)}3] (Ln=La, 10 ; Pr, 11 ). With uranium, a mono‐nitrile reaction product, [(C5Me5)3U(NCCMe3)] ( 12 ), which is analogous to 5 , was obtained from the reaction between [(C5Me5)3U] and Me3CCN, but [(C5Me5)3U] reacts with Me3CNC through C? N bond cleavage to form a trimeric cyanide complex, [{(C5Me5)2U(μ‐CN)(CNCMe3)}3] ( 13 ).  相似文献   

9.
Investigations of the Reaction between the [Lithium(trimethylsilyl)amido]-methyl-trimethyl-silylamino-silane Me(Me3SiNLi)(Me3SiNH)SiH and different Electrophiles The lithium silylamide Me(Me3SiNLi)(Me3SiNH)SiH 1 reacts with chlorotrimethylsilan in the nonpolar solvent n-hexane to the N-substitution product Me[(Me3Si)2N](Me3SiNH)SiH 2 and to the cyclodisilazane [Me(Me3SiNH)Si—N(SiMe3)]2 3 nearly in same amounts. The reaction of 1 with chlorotrimethylstannane gives besides small amounts of the cyclodisilazane 3 the N-substitution product Me[(Me3Si)(Me3Sn)N](Me3SiNH)SiH 4 . By the reaction of 1 with trimethylsilyltriflate the cyclodisilazane 3 is obtained as the main product. Furthermore 2 and the cyclodisilazane 5 are formed. Ethylbromide shows no reaction with 1 under the same conditions. These results indicate the existence of an equilibrium of the lithium silylamide 1 , the silanimine Me(Me3SiNH)Si?N(SiMe3) and lithium hydride.  相似文献   

10.
The Reaction Behaviour of Lithiated Aminosilanes RR′Si(H)N(Li)SiMe3 The bis(trimethylsilyl)aminosubstituted silances RR′Si(H)N(SiMe3)2 11 – 16 (R,R′ = Me, Me3SiNH, (Me3Si)2N) are obtained by the reaction of the lithium silylamides RR′Si(H)N(Li)SiMe3 1 – 10 (R,R′ = Me3SiNLi, Me, Me3SiNH, (M3Si)2N) with chlorotrimethylsilane in the polar solvent tetrahydrofurane (THF). In the reaction of the lithium silylamides [(Me3Si)2N]2(Me3SiNLi)SiH 10 with chlorotrimethylsilane in THF the rearranged product 1,1,3-tris[bis(trimethylsilyl)amino]-3-methyl-1,3-disila-butane [(Me3Si)2N]2Si(H)CH2SiMe2N(SiMe3)2 17 is formed. The reaction of the lithium silyamides RR′ Si(H)N(Li)SiMe3 1 – 3 (1: R = R′ = Me; 2: R = Me, R′ = Me3SiNH; 3: R = Me, R′ = Me3SiNLi) with chlorotrimethylsilane in the nonpolar solvent n-hexane gives the cyclodisilazanes [RR′ Si? NSiMe3]2 18 – 22 (R = Me, Me3SiNH, (Me3Si)2N; R′ = Me, Me3SiNH, (Me3Si)2N, N(SiMe3)Si · Me(NHSiMe3)2) and trimethylsilane. The lithium silylamides 4 , 5 , 6 , 9 , 10 (4: R = R′ = Me3SiNH; 5: R = Me3SiNH, R′ = Me3SiNLi; 6: R = R′ = Me3SiNLi; 9: R = (Me3Si)2N, R ′ = Me3SiNLi; 10: R = R′ = (Me3Si)2N) shows with chlorotrimethylsilane in n-hexane no reaction. The crystal structure of 17 and 21 are reported.  相似文献   

11.
The rare‐earth‐metal? hydride complexes [{(1,7‐Me2TACD)LnH}4] (Ln=La 1 a , Y 1 b ; (1,7‐Me2TACD)H2=1,7‐dimethyl‐1,4,7,10‐tetraazacyclododecane, 1,7‐Me2[12]aneN4) were synthesized by hydrogenolysis of [{(1,7‐Me2TACD)Ln(η3‐C3H5)}2] with 1 bar H2. The tetrameric structures were confirmed by 1H NMR spectroscopy and single‐crystal X‐ray diffraction of compound 1 a . Both complexes catalyze the dehydrogenation of secondary amine? borane Me2NH ? BH3 to afford the cyclic dimer (Me2NBH2)2 and (Me2N)2BH under mild conditions. Whilst the complete conversion of Me2NH ? BH3 was observed within 2 h with lanthanum? hydride 1 a , the yttrium homologue 1 b required 48 h to reach 95 % conversion. Further reactions of compound 1 a with Me2NH ? BH3 in various stoichiometric ratios gave a series of intermediate products, [{(1,7‐Me2TACD)LaH}4](Me2NBH2)2 ( 2 a ), [(1,7‐Me2TACDH)La(Me2NBH3)2] ( 3 a ), [(1,7‐Me2TACD)(Me2NBH2)La(Me2NBH3)] ( 4 a ), and [(1,7‐Me2TACD)(Me2NBH2)2La(Me2NBH3)] ( 5 a ). Complexes 2 a , 3 a , and 5 a were isolated and characterized by multinuclear NMR spectroscopy and single‐crystal X‐ray diffraction studies. These intermediates revealed the activation and coordination modes of “Me2NH ? BH3” fragments that were trapped within the coordination sphere of a rare‐earth‐metal center.  相似文献   

12.
N-Silylation and Si? O Bond Splitting at the Reaction of Lithiated Siloxy-silylamino-silanes with Chlorotrimethylsilane Lithiated Siloxy-silylamino-silanes were allowed to react in tetrahydrofurane (THF) and in n-octane (favoured) and n-hexane, resp., with chlorotrimethylsilane. The monoamide (Me3SiO)Me2Si(NLiSiMe3) gives in THF and in n-octane the N-substitution product (Me3SiO)Me2Si · [N(SiMe3)2] 1 , the diamide (Me3SiO)MeSi(NLiSiMe3)2 only in THF the N-substitution products (Me3SiO)MeSi[N(SiMe3)2]2 2 (main product) and (Me3SiO)MeSi[N(SiMe3)2](NHSiMe3) 3 . In n-octane the diamide reacts mainly under Si? O bond splitting. The cyclodisilazane [(Me3SiNH)MeSi? NSiMe3]2 6 is obtained as the main product. Byproducts are 2, 3 and the tris(trimethylsilylamino) substituted disilazane (Me3SiO)(Me3SiNH)MeSi? N · (SiMe3)? SiMe(NHSiMe3)2 7 . The triamide (Me3SiO)Si · (NLiSiMe3)3 reacts under Si? O and Si? N bond splitting in n-octane as well as in THF. The cyclodisilazanes [(Me3SiNH)2 · Si? NSiMe3]2 10 and ( 11 : R = Me3SiNH, 12 : R = (Me3Si)2N) are formed. in THF furthermore the N-substitution products (Me3SiO)Si[N(SiMe3)2] · (NHSiMe3)2 4 and (Me3SiO)Si[N(SiMe3)2]2(NHSiMe3) 5 . The Si? O bond splitting occurs in boiling n-octane also in absence of the chlorotrimethylsilane. An amide solution of (Me3SiO)MeSi(NHSiMe3)2 with n-butyllithium in the molar ratio 1 : 1 leads in n-octane and n-hexane to 6 and 7 , in THF to 3 . The amide solutions of (Me3SiO)Si · (NHSiMe3)3 with n-butyllithium the molar ratio 1 : 1 and 1 : 2 give in THF 4 and 5 , respectively.  相似文献   

13.

Abstract  

The reaction of Me2PO2H and Me2AsO2H with SbCl3, BiCl3, and Bi(NO3)3·5H2O gave the complexes Sb(Me2PO2)3, Sb(Me2AsO2)3, (Me2PO2)2Bi-Cl, Bi(Me2AsO2)3, (Me2PO2)2Bi(NO3), and (Me2AsO2)2Bi(NO3)·H2O, respectively. The arsinato complexes did not react with the Lewis bases pyridine, Ph3P, and Ph3As in acetone. The compounds Sb(Me2AsO2)3 and (Me2AsO2)2Bi(NO3)·H2O reacted to a small extent with nicotinic acid in methanol but Bi(Me2AsO2)3 gave (Me2AsO2-BiO) x in good yields. (Me2AsO2)2Bi(NO3)·H2O in methanol quantitatively rearranged to new complexes with the same composition, [(Me2AsO2)2Bi(NO3)·H2O]′ and [(Me2AsO2)2Bi(NO3)·H2O]″ in the presence of pyridine. With thiophenol in air, Sb(Me2AsO2)3 gave PhSSPh and Me2As-SPh (1:1 mol ratio), (Me2AsO2-SbO) x and some Sb(Me2AsO2)3 was reformed, Bi(Me2AsO2)3 gave (Me2AsO2-BiO) x , PhSSPh, and Me2As-SPh (1:0.6 mol ratio), whereas (Me2AsO2)2Bi(NO3)·H2O quantitatively gave PhSSPh, thus acting as a catalyst for the air oxidation of thiophenol.  相似文献   

14.
Synthesis and Properties of Partially Silylated Tri- and Tetraphosphanes. Reaction of Lithiated Diphosphanes with Chlorophosphanes The reactions of Li(Me3Si)P? P(SiMe3)(CMe3) 1 , Li(Me3Si)P? P(CMe3)2 2 , and Li(Me3C)P? P(SiMe3)(CMe3) 3 with the chlorophosphanes P(SiMe3)(CMe3)Cl, P(CMe3)2Cl, or P(CMe3)Cl2 generate the triphosphanes [(Me3C)(Me3Si)P]2P(SiMe3) 4 , (Me3C)(Me3Si)P? P(SiMe3)? P(CMe3)2 6 , [(Me3C)2P]2P(SiMe3) 7 , and (Me3C)(Me3Si)P? P(SiMe3)? P(CMe3)Cl 8 . The triphosphane (Me3C)2P? P(SiMe3)? P(SiMe3)2 5 is not obtainable as easily. The access to 5 starts by reacting PCl3 with P(SiMe3)(CMe3)2, forming (Me3C)2 P? PCl2, which then with LiP(SiMe3)2 gives (Me3C)2 P? P(Cl)? P(SiMe3)2 11 . Treating 11 with LiCMe3 generates (Me3C)2P? P(H)? P(SiMe3)2 16 , which can be lithiated by LiBu to give (Me3C)2P? P(Li)? P(SiMe3)2 13 and after reacting with Me3SiCl, finally yields 5 . 8 is stable at ?70°C and undergoes cyclization to P3(SiMe3)(CMe3)2 in the course of warming to ambient temperature, while Me3SiCl is split off. 7 , reacting with MeOH, forms [(Me3C)2P]2PH. (Me3C)2P? P(Li)? P(SiMe3)2 18 , which can be obtained by the reaction of 5 with LiBu, decomposes forming (Me3C)2P? P(Li)(SiMe3), P(SiMe3)3, and LiP(SiMe3)2, in contrast to either (Me3C)2P? P(Li)? P(SiMe3)(CMe3) 19 or [(Me3C)2P]2PLi, which are stable in ether solutions. The Li phosphides 1 , 2 , and 3 with BrH2C? CH2Br form the n-tetraphosphanes (Me3C)(Me3Si)P? [P(SiMe3)]2? P(SiMe3)(CMe3) 23 , (Me3C)2P? [P(SiMe3)]2? P(CMe3)2 24 , and (Me3C)(Me3Si)P? [P(CMe3)]2? P(SiMe3)(CMe3) 25 , respectively. Li(Me3Si)P? P(SiMe3)2, likewise, generates (Me3Si)2P? [P(SiMe3)]2? P(SiMe3)2 26 . Just as the n-triphosphanes 4 , 5 , 6 , and 7 , the n-tetraphosphanes 23 , 24 , and 25 can be isolated as crystalline compounds. 23 , treated with LiBu, does nor form any stable n-tetraphosphides, whereas 24 yields (Me3C)2P? P(Li)? P(SiMe3)? P(CMe3)2, that is stable in ethers. With MeOH, 24 , forms crystals of (Me3C)2P? P(H)? P(SiMe3)? P(CMe3)2.  相似文献   

15.
Reaction of the iodides TsiSiMe2I and TsiSiPh2I, (Tsi  (Me3Si)3C) with AgClO4 in t-BuOH provides a route to the silanols TsiSiMe2OH and (Me3Si)2-C(SiPh2Me)(SiMe2OH), respectively. TsiSiMe2OH gives the disiloxane TsiSiMe2OSiMe3 when treated with either (a) Me3SiOClO3 (prepared in situ from AgClO4 and Me3SiCl) in benzene, (b) Me3SiI (in the presence of a little (Me3Si)2-NH), (c) O,N-bis(trimethylsilyl)acetamide, or (d) MeLi followed by Me3SiCl. It does not react with Me3SiCl, but with Me2SiCl2 gives TsiSiMe2OSiMe2Cl, and with CH3COCl gives TsiSiMe2OCOCH3. The disiloxane is stable to methanolic acid or base, but reacts with KOH in H2O/Me2SO and with CF3COOH to give TsiSiMe2OH. The disiloxane (Me3Si)2C(SiPh2Me)(SiMe2OSiMe3) is formed by treatment of (Me3Si)2C(SiPh2Me)(SiMe2OH) with Me3SiI/(Me3Si)2NH. Treatment of TsiSiPhMeI with AgClO4 in t-BuOH gives the silanols TsiSiPhMeOH and (Me3Si)2C(SiPhMe2)(SiMe2OH) (which with Me3SiI/(Me3Si)2NH give the corresponding disiloxanes) along with some of the t-butoxide (Me3Si)2C(SiPhMe2)(SiMe2OBut).  相似文献   

16.
Partial reduction of MeSiCl3 and Me2SiCl2 using CaH2 or (TiH2)n at high temperature (300°C) leads to MeSiHCl2 and Me2SiHCl, respectively, in good yields but in low proportion. In the presence of AlCl3 as catalyst the reaction affords Me2SiCl2 and Me3SiCl, in yields higher than those previously observed in the absence of a reducing agent. These redistribution reactions involve MeSiHCl2 and Me2SiHCl as intermediates. Consequently Me2SiHCl with or without Me2SiCl2 and Alcl3 deposited on carbon black as catalyst can undergo disproportionation to give Me3SiCl.  相似文献   

17.
The chelating ligand Me3COSiMe2N(CMe3)H (III) can easily be prepared in high yields and has been employed for the synthesis of some metal derivatives. With n-butyllithium III forms [Me2Si(Me3CO)(Me3CNLi)]2 (IV), which is found to be dimeric in solution and in the gas phase. When IV is allowed to react with thallium(I) chloride in diethyl ether the monomeric, highly reactive Me2Si- (Me3CO)(Me3CNTl) (II) is formed under precipitation of lithium chloride. The cyclic structure and the physical properties of II can be understood on the basis of isosteric relation to cyclic diazasilastannylenes. II forms the tetramer (TlOMe)4 with methanol and does not add methyl iodide to the metal, the thalium containing product being TII. With magnesium dichloride in diethyl ether yields thallium(I) chloride and the spiro compound [Me2Si(Me3CO)(Me3CN)]2-Mg (VI), in which magnesium exhibits 4-fold coordination.  相似文献   

18.
The Diels—Alder reactions of α-pyrone with Me3SiCCSiMe3, Me3SiCCSiMe2H, Me2HSiCCSiMe2H, Me3GeCCGeMe3, Me3SiCCGeMe3, Me3SiCCSnMe3 and EtCCEt were examined. All except the first two acetylenes gave the expected 1,2-disubstituted benzene product, in line with results obtained previously with Me3SnCCSnMe3. The first two acetylenes, Me3SiCCSiMe3 and Me3SiCCSiMe2H, also yielded benzene products containing substantial amounts of the 1,3-disubstituted benzenes, as well as minor amounts of the 1,4-isomers. This formation of unexpected isomers during these reactions was shown to result from acid-catalyzed rearrangement of the initially formed 1,2-disubstituted products, 1,2-(Me3Si)2C6H4 and 1-Me3Si-2-Me2HSiC6H4. The acidic impurities arose from pyrolysis of the bromobenzene solvent used or were introduced as contaminants of the α-pyrone. Such isomerizations were inhibited by addition of small amounts of triethylamine. The fact that no rearrangement took place with the other acetylenes is due to the scavenging of acidic impurities which might cause isomerization by the starting acetylene and the benzene product via metal—carbon bond cleavage processes.  相似文献   

19.
Treatment of [C5Me5(CO)3Fe]BF4 (I) with the phosphines Me3P and Et3P under thermal or photochemical conditions yields the novel iron salts [C5Me5-(CO)2(R3P)Fe]BF4 (R = Me (IIa), R = Et (IIb)) and [C5Me5(CO)(Me3P)2Fe]BF4 (IIc). The reaction of I and IIa with two mol of the ylide Me3PCH2 leads to the formation of the ironacyl-ylides C5Me5(CO)(L)FeC(O)CHPMe3 (L = CO (IVa), Me3P (IVb)). IVa selectively reacts at the “ylidic” carbon with the electrophilic reagents MeI, MeOSO2F, Me3SiOSO2CF3 to give the ironacyl-phosphonium salts [C5Me5(CO)2FeC(O)CH(R)PMe3] X (VaVc), while IVb is partially converted to [C5Me5(CO)2FeC(O)CH2PMe3]BF4 (IIIa) is obtained together with [C5Me5-(CO)2Fe]2 from I and IVa.  相似文献   

20.
Summary The liquid phase oxidation of gold in donor-acceptor organic and aqueous-organic media has been studied. The compounds [AuCl(Me2S)], [AuBr(Me2S)], [AuBr3(Me2S)], [Me3S][AuBr4], [Me3S][AuBr4(Me2S)]·H2O, [Me3SO]-[AuBr4]·H2O, [Me3S][Au2Br7(Me2S)2]·3H2O, [Me3S]2-[Au2Br8]·2DMSO·H2O, [Me2(Bu)SO][AuBr4]·H2O and [Me3S]Br were isolated by dissolution of Au0 in DMSO-RX mixtures (R = H or Bu; X = Cl or Br). The products were characterized by elemental analysis and i.r. spectroscopy. The nature of the Au0-DMSO-RX systems and the oxidant species are discussed in terms of a newly-developed concept of donor-acceptor electron transport (DAET) systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号