首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
毛细管电泳直接分析与水不互溶溶液中痕量物质的新方法   总被引:1,自引:0,他引:1  
本文采用在线反萃取-场放大进样方法实现了毛细管电泳与溶剂微萃取的直接联用.  相似文献   

2.
毛细管电泳安培法检测中的在柱场放大效应   总被引:5,自引:1,他引:5  
胡深  胡涌刚 《分析化学》1996,24(9):1028-1031
本文首次报道用安培电化学检测器探讨毛细管电泳分离的场放大进样效应,分析了系统峰的形成以及场放大进样对电泳分离检测的影响。采用25μm内径毛细管电泳分离,对去甲肾上腺素(NE)和儿茶酚(CAT)分别可达0.4nmol/L和1.5nmol/L的浓度检测限,有效提高了毛细管电泳安培法检测的灵敏度。  相似文献   

3.
毛细管电泳中的样品浓缩技术   总被引:6,自引:0,他引:6  
杨永坛  梁冰  欧庆瑜 《色谱》2000,18(2):115-119
 评述了毛细管电泳中提高被分析物检测灵敏度的有效方法之一——样品预浓缩技术 ,它包括电堆集富集、场放大进样、等速电泳等 8种技术。共 67篇。  相似文献   

4.
张召香  张飞  刘营 《化学学报》2012,70(21):2251-2256
利用Au纳米粒子作为辣根过氧化物酶(HRP)标记抗体的载体,结合电堆积预富集技术,发展了一种基于场放大进样及Au纳米粒子双重富集的毛细管电泳电化学免疫分析技术用于大肠杆菌的检测.大肠杆菌与酶标抗体免疫反应后直接进行场放大进样预富集,免疫样品快速迁移并堆积在毛细管入口端,同时带负电荷的金纳米粒子向阳极端迁移,在样品与缓冲溶液的界面处吸附样品离子.金纳米粒子作为多酶载体使检测信号进一步放大.以标记在抗体上的HRP催化H2O2氧化邻苯二胺产生的电流信号来检测大肠杆菌.同常规电动进样毛细管电泳相比,该双重富集技术可使灵敏度提高1400倍.该方法对大肠杆菌检测的线性范围为2.0~2000.0 cfu mL-1,检出限为1.0 cfu mL-1,实现了对扇贝样品中大肠杆菌的快速、灵敏检测.  相似文献   

5.
李超  王琪  张召香 《色谱》2022,40(3):289-295
通过热解法制备了硫掺杂的石墨烯量子点(S-GQDs),同石墨烯量子点(GQDs)相比,S原子的引入有效改善了GQDs的表面状态和化学特性、增强其对正电荷的捕获能力,使其更易与阳离子相互作用.以S-GQDs为载体,结合电堆积富集技术,发展了一种基于场放大进样(FASI)和S-GQDs放大的双重富集毛细管电泳(CE)分离检...  相似文献   

6.
李云  何友昭  胡艳云  王蕾 《分析化学》2005,33(2):248-250
提出场放大进样和酸堆积结合的大体积样品复合富集方法,实现了毛细管电泳对高盐样品中阳离 子的有效富集和分离。向样液中添加70%(V/V)乙腈,场放大进样600s后,电动注入强酸做酸堆积,预富集 样品带用毛细管区带电泳分离仍能获得满意的分离度。此法的富集倍数约为常规电动进样的800倍。普萘 洛尔和美托洛尔的检出限分别达到1×10-4mg/L和7×10-4mg/L  相似文献   

7.
Liu S  Wang H 《色谱》2011,29(9):816-829
毛细管电泳以其分析速度快、分离效率高、操作简便、能够实现高通量而获得了广泛的应用,但由于检测窗口小而导致其检测灵敏度低。为了提高检测灵敏度,目前已发展了多种毛细管电泳在线聚焦和样品预浓缩技术,如场放大样品堆积、pH调节浓缩、胶束电动毛细管色谱、等速电泳等。这些技术由于能够在毛细管内同时实现样品的聚焦和分离、操作简便而获得了广泛的兴趣和关注。本文针对毛细管电泳的在线聚焦的原理、技术和应用做一简要的介绍和总结。  相似文献   

8.
王明明  沈菁  宋婷  李胜清  陈浩 《分析化学》2012,40(5):809-810
1 引 言 百草枯属有机杂环类季铵盐除草剂,由于它具有优良的除草效果,已广泛应用于多种作物的杂草防治.百草枯具有极强的水溶性,极易迁移至水体环境中,从而对饮用水的质量安全构成潜在威胁.目前,百草枯的残留检测方法主要有分光光度法[1]、液相色谱-质谱联用法[2]、气相色谱质谱联用法[3]和毛细管电泳法(CE) [4~6].采用分光光度法测定百草枯,不仅操作繁琐费时,而且灵敏度低.采用气相色谱法测定百草枯,通常需要衍生化,应用较少[3].采用液相色谱法测定百草枯,通常需要在流动相中添加离子对试剂[2].毛细管电泳具有分离效率高,分析速度快等优点,已被广泛用于水样中百草枯残留的测定.然而,毛细管电泳灵敏度不高,极大地限制了其在实际样品分析中的应用.场放大样品进样(FASI)是一种简单有效的在线富集方法,其富集倍数可达1000倍[7],可有效提高毛细管电泳技术的灵敏度,因此应用较为广泛.本实验建立了场放大样品进样-压力辅助毛细管区带电泳法(CZE),用于测定饮用水中百草枯的残留量.  相似文献   

9.
针对土壤中速效磷的快速检测需求,建立了基于非接触电导检测和场放大进样在线富集技术的毛细管电泳分离检测土壤中水溶性磷酸盐的分析方法。对影响分离检测效果的实验条件(电泳运行液组成、pH值、分离电压、进样电压和时间)进行了考察和优化。采用毛细管区带电泳模式,以35 mmol/L乙酸 - 2 mmol/L乙酸铵溶液为电泳运行液,负高压分离(-14 kV)和场放大进样(-11 kV × 10 s),磷酸根离子在8 min内可获良好分离和灵敏检测,检出限为5 μg/L,线性范围为16~800 μg/L。研究表明放大进样在线富集技术使检测灵敏度得到显著提高,富集因子可达580倍。日内和日间相对标准偏差(RSD)小于5.0%。土壤中共存的常见无机阴离子(Cl-、SO2?442-、NO?33-)、有机基质和浸出液基体颜色不干扰速效磷的测定,表现出较强的抗干扰能力。该方法无需复杂的前处理即可直接进样分析,具有简单快速、灵敏高效、分析成本低的优点。对实际土壤样品和国标土壤样品中的速效磷进行检测,检测结果与标准方法一致。  相似文献   

10.
利用高压电容耦合非接触电导检测器(HV-C4D),结合毛细管电泳场放大进样(FASS),以2-N-吗啡啉乙磺酸(MES)/组氨酸(His)为缓冲溶液,电泳分离测定了Zn2+.考察了样品溶液中MES/His的浓度及电动进样时间对场放大浓缩因子及缓冲溶液浓度对检测灵敏度的影响.在10mmol/LMES/His(pH=4.9)的分离缓冲溶液中,FASS对Zn2+的浓缩因子为1.3×103.Zn2+的浓度在10~1000nmol/L范围内与峰面积有良好线性关系(R=0.9995),检测限为5nmol/L(S/N=3).该方法可用于痕量Zn2+的测定.  相似文献   

11.
A new multi‐stacking pre‐concentration procedure based on field‐enhanced sample injection (FESI), field‐amplified sample stacking, and transient isotachophoresis was developed and implemented in a compact microchip electrophoresis (MCE) with a double T‐junction glass chip, coupled with an on‐chip capacitively coupled contactless conductivity detection (C4D) system. A mixture of the cationic target analyte and the terminating electrolyte (TE) from the two sample reservoirs was injected under FESI conditions within the two sample‐loading channels. At the double T‐junction, the stacked analyte zones were further concentrated under field‐amplified stacking conditions and then subsequently focused by transient‐isotachophoresis and separated along the separation channels. The proposed multi‐stacking strategy was verified under a Universal Serial Bus (USB) fluorescence microscope employing Rhodamine 6G as the model analyte. This developed approach was subsequently used to monitor the target quinine present in human plasma samples. The total analysis time for quinine was approximately 200 s with a sensitivity enhancement factor of approximately 61 when compared to the typical gated injection. The detection and quantification limits of the developed approach for quinine were 3.0 μg/mL and 10 μg/mL, respectively, with intraday and interday repeatability (%RSDs, n = 5) of 3.6 and 4.4%. Recoveries in spiked human plasma were 98.1–99.8%.  相似文献   

12.
One of the most cited limitations of capillary and microchip electrophoresis is the poor sensitivity. This review continues to update this series of biannual reviews, first published in Electrophoresis in 2007, on developments in the field of online/in‐line concentration methods in capillaries and microchips, covering the period July 2016–June 2018. It includes developments in the field of stacking, covering all methods from field‐amplified sample stacking and large‐volume sample stacking, through to isotachophoresis, dynamic pH junction, and sweeping. Attention is also given to online or in‐line extraction methods that have been used for electrophoresis.  相似文献   

13.
Multiple labeling of nucleic acids by intercalative dyes is a promising method for ultrasensitive nucleic acid assays. The properties of the fast dissociation and instability of dye–DNA complexes may prevent from their wide applications in CE‐LIF nucleic acid analysis. Here, we describe an optimum CE focusing method by using appropriately paired sample and separation buffers, Tris‐glycine buffer and Tris‐glycine‐acetic acid buffer. The developed method was applied in both uncoated and polyacrylamide coated fused‐silica capillary‐based CE‐LIF analysis while the sample and separation buffers were conversely used. The complexes of intercalative dye benzoxazolium‐4‐pyridinium dimer and dsDNA were greatly focused (separation efficiency: 1.8 million theoretical plates per meter) by transient isotachophoresis mechanism in uncoated capillary, and moderately focused by transient isotachophoresis in combination of field amplified sample stacking and further stabilized by the paired buffer in polyacrylamide coated capillary. Based on the developed focusing strategy, an ultrasensitive DNA assay was developed for quantitation of calf thymus dsDNA (from 0.02 to 2.14 pM). By the use of an excitation laser power as low as 1 mW, the detection limits of calf thymus dsDNA (3.5 kb) are 7.9 fM in concentration and 2.4×10?22 mol (150 molecules) in mass. We further demonstrate that the non‐gel sieving CE‐LIF analysis of DNA fragments can be enhanced by the same strategy. Since the presented strategy can be applied to uncoated and coated capillaries and does not require special device, it is also reasonable to extend to the applications in chip‐based CE DNA analysis.  相似文献   

14.
Parathyroid hormone (PTH) is a common clinical marker whose quantification relies on immunoassays, giving variable results as batch, brand, or target epitope changes. Sheathless CE‐ESI‐MS, combining CE resolution power and low‐flow ESI sensitivity, was applied to the analysis of PTH in its native conformation in the presence of related forms. Fused silica and neutral‐coated capillaries were investigated, as well as preconcentration methods such as transient isotachophoresis, field‐amplified sample injection (FASI), and electrokinetic supercharging (EKS). The method for the separation of PTH and its variants was first developed using fused‐silica capillary with UV detection. An acidic BGE was used to separate 1–84 PTH (full length), 7–84 PTH, and 1–34 PTH. Acetonitrile was added to the BGE to reduce peptide adsorption onto the capillary wall and transient isotachophoresis was used as analyte preconcentration method. The method was then transferred to a sheathless CE‐ESI‐MS instrument. When using a fused silica capillary, CE‐MS was limited to μg/mL levels. The use of a neutral coating combined with FASI or EKS allowed a significant increase in sensitivity. Under these conditions, 1–84 PTH, 7–84 PTH, and 1–34 PTH were detected at concentrations in the low ng/mL (FASI) or pg/mL (EKS) range.  相似文献   

15.
Shim SH  Riaz A  Choi K  Chung DS 《Electrophoresis》2003,24(10):1603-1611
A dual stacking mechanism based on transient isotachophoresis (TITP) and induced pH junction focusing is demonstrated as a means to increase the concentration sensitivity in capillary electrophoresis of highly saline samples. When stacking was carried out with an unbuffered saline sample of fluorescein between two zones of low mobility background electrolyte at high pH under an electric field of reverse polarity, two transient peaks at both boundaries of the sample zone were observed. One peak at the rear boundary could be inferred as a transient isotachophoretic stacked zone. Through computer simulations of an unbuffered sample with a high concentration of sodium chloride, we showed that the fast moving zones of sodium and chloride ions induced pH changes at both boundaries to satisfy the electroneutrality condition and that the peak at the front boundary was due to the induced pH junction. To verify the pH changes, an indicator, thymol blue, was added to an NaCl solution and the color changes under an electric field were observed. The proposed mechanism was supported by observing the dual stacking procedure for an unbuffered sample of 4-nitrophenol and measuring additional sensitivity enhancements by dual stacking for ten weakly acidic compounds. For the ten analytes including nucleoside phosphates, every dual stacking of an unbuffered sample exhibited an additional enhancement up to 86% larger than that of usual transient isotachophoresis of the corresponding buffered sample without loss of separation efficiency and reproducibility. Therefore, it would be useful to skip over buffering in sample preparation for TITP, contrary to the general recommendation.  相似文献   

16.
The foremost requirement of quantification of cellulases expressed in genetically modified sugarcane is an efficient sample clean-up. This work investigates the feasibility of isotachophoresis for this purpose. An electrolyte system comprising a leading electrolyte of 10 mM formic acid at pH 9.0 and a terminating electrolyte of 10 mM β-alanine was devised and used to perform isotachophoresis of cellulases. The use of a simple front cutting method removed a majority of interfering species in the juice, thereby resulting in the formation of a distinct zone of desired proteins. In comparison to techniques such as ultrafiltration and liming, the analysis time and loss of desired proteins was lower when the sample was prepared by using isotachophoresis. Hence, isotachophoresis was an ideal choice for purification of the proteins in question from the remaining components in the juice.  相似文献   

17.
Analytical capabilities of capillary zone electrophoresis (CZE) with on-line coupled capillary isotachophoresis (ITP) sample pretreatment in the column-coupling capillary electrophoresis equipment to separate and determine enantiomers present in multicomponent ionic matrices were studied. Tryptophan was used as a model analyte in the ITP-capillary zone electrophoresis experiments performed in this context while a 90-component model mixture of UV-light absorbing organic anions and urine served as multicomponent sample matrices. Various working modes in which the on-line coupled capillary isotachophoresis-capillary zone electrophoresis combination in the column-coupling separation system can operate were employed in the anionic regime of the separation with direct injections of the samples. Advantages and limitations of these working modes in the separations of enantiomers present in model and urine matrices were assessed. Experiments with model mixtures of tryptophan enantiomers revealed that the two were resolved in the capillary zone electrophoresis stage with the aid of alpha-cyclodextrin also when their concentration ratio in the sample was 1:200 while the concentration of L(-)-tryptophan was 25 nmol/l. The limits of detection for the enantiomers were at approximately 10 nmol/l (approximately 1.5 ng/ml) concentrations for a 220 nm detection wavelength of the UV detector employed in the capillary zone electrophoresis stage and for a 30 microliters sample load. A high sample load capacity of the on-line coupled capillary isotachophoresis stage was effective in separating the samples corresponding to 3-6 microliters volumes of undiluted urine. The results from the runs with urine samples showed that only the capillary isotachophoresis-capillary zone electrophoresis combination with a post-column on-line coupled capillary isotachophoresis sample clean-up (responsible for a removal of more than 99% of the sample anionic constituents migrating in the on-line coupled capillary isotachophoresis stack and detectable in the capillary zone electrophoresis stage) provided a universal alternative for the detection and quantitation of the model analyte (L(-)-tryptophan).  相似文献   

18.
Shihabi ZK 《Electrophoresis》2002,23(11):1612-1617
We show that many water miscible organic solvents such as acetonitrile, acetone and small alcohols can function as a terminating ion in transient isotachophoresis, which leads to sample concentration on the capillary. It is suggested that this method could be termed transient "pseudo-isotachophoresis" (pseudo-ITP). Because of their low conductivity, these water miscible organic solvents provide the high field strength necessary for band sharpening similar to that provided by the terminating ion. Salts, when present in such samples act briefly as leading ions, migrating rapidly in the organic solvent until they are slowed at the interface of the separation buffer. When the organic solvents are added to the sample, both the migrations as well as the stacking of the analytes are affected by the concentration of salts (leading ions) in the sample, similar to that observed in isotachophoresis. Our results show that this type of stacking offers good reproducibility and reliability for practical analysis. In practice, pseudo-ITP stacking is much easier to perform compared to that of true ITP with several added practical advantages as discussed.  相似文献   

19.
20.
We present the development, formulation, and performance of a new simulation tool for electrophoretic preconcentration and separation processes such as capillary electrophoresis, isotachophoresis, and field amplified sample stacking. The code solves the one-dimensional transient advection-diffusion equations for multiple multivalent weak electrolytes (including ampholytes) and includes a model for pressure-driven flow and Taylor–Aris dispersion. The code uses a new approach for the discretization of the equations, consisting of a high resolution compact scheme which is combined with an adaptive grid algorithm. We show that this combination allows for accurate resolution of sharp concentration gradients at high electric fields, while at the same time significantly reducing the computational time. We demonstrate smooth, stable, and accurate solutions at current densities as high as 5000 A/m2 using only 300 grid points, and a 75-fold reduction in computational time compared with equivalent uniform grid techniques. The code is available as an open source for free at http://microfluidics.stanford.edu.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号