首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The problem of membrane softening by thermal undulations is revisited. In contrast to general belief, fluid membranes are predicted to be stiffened, not softened, by their undulations. Equal values of the effective bending rigidity are calculated from the interplay of local mean curvature modes (hats) on the basically flat membrane and from the coupling of spherical harmonic modes with spherical curvature. In addition, a conjecture is made on the entropy of membrane closure. It relies on a similarity of membrane closure to periodic boundary conditions. Received: 10 June 1997 / Revised: 7 October 1997 / Accepted: 2 December 1997  相似文献   

2.
We have studied both experimentally and theoretically the surface pressure isotherms of copolymers of polystyrene-polyethyleneoxide (PS-PEO) at the air-water interface. The SCMF (single chain mean-field) theory provides a very good agreement with the experiments for the entire range of surface densities and is consistent with the experiments if an adsorption energy per PEO monomer at the air-water interface of about one kB T is taken. In addition, the chain density profile has been calculated for a variety of surface densities, from the dilute to the very dense ones. The SCMF approach has been complemented by a mean-field approach in the low density regime, where the PEO chains act as a two-dimensional layer. Both theoretical calculations agree with the experiments in this region. Received: 19 June 1997 / Revised: 2 February 1998 / Accepted: 11 February 1998  相似文献   

3.
The line tension of a symmetric, lipid bilayer in its liquid-crystalline state is calculated on the basis of a molecular lipid model. The lipid model extends the opposing forces model by an expression for the conformational free energy of the hydrocarbon chains. We consider a membrane edge that consists of a perturbed bilayer covered by a section of a cylinder-like micelle. The structural rearrangement of the lipids implies an excess free energy which we minimize with respect to the cross-sectional shape of the membrane edge, including both the micellar and the bilayer region. The line tension is derived as a function of molecular lipid properties, like the lipid chain length or the head group interaction strength. We also relate it to the spontaneous curvature of the lipid layer. We find the line tension to become smaller for lipid layers that tend to curve more towards the hydrophobic core. Our predictions for the line tension and their relation to experimentally derived values are discussed. Received 2 January 2000  相似文献   

4.
5.
We amplify previous arguments why mean curvature should be used as measure of integration in calculating the effective bending rigidity of fluid membranes subjected to a weak background curvature. The stiffening of the membrane by its fluctuations, recently derived for spherical shapes, is recovered for cylindrical curvature. Employing curvilinear coordinates, we then discuss stiffening for arbitrary shapes, confirm that the elastic modulus of Gaussian curvature is not renormalized in the presence of fluctuations, and show for the first time that any spontaneous curvature also remains unchanged. Received 19 April 1999 and in Received in final form 7 January 2000  相似文献   

6.
We consider the adsorption of an isolated, Gaussian, random, and quenched copolymer chain at an interface. We first propose a simple analytical method to obtain the adsorption/depletion transition, by averaging over the disorder the partition function instead of the free energy. The adsorption thresholds obtained by previous authors at a solid/liquid and at a liquid/liquid interface for multicopolymer chains can be rederived using this method. We also compare the adsorption thresholds obtained for bimodal and for Gaussian disorder; they only agree for small disorder. We focus on the specific case of an ideally flat asymmetric liquid/liquid interface, and consider the situation where the chain is composed of monomers of two different chemical species A and B. The replica method is developed for this case. We show that the Hartree approximation, coupled to a replica symmetry assumption, leads to the same adsorption thresholds as obtained from our general method. In order to describe the properties of the adsorbed (or depleted) chain, we develop a new approximation for long chains, within the framework of the replica theory. In most cases, the behavior of a random copolymer chain can be mapped onto that of a homopolymer chain at an asymmetric attractive interface. The values of the effective adsorption energy are different for a random and a periodic copolymer chain. Finally, we consider the case of uncorrelated annealed disorder. The behavior of an annealed chain can be mapped onto that of a homopolymer chain at an asymmetric non attractive interface; hence, an annealed chain cannot adsorb at an asymmetric interface. Received 21 January 1999  相似文献   

7.
We present an alternative model of structure and energetics of the inverted amphiphilic mesophases. The previous studies of the inverted hexagonal, HII, and inverted micellar cubic, QII, phases considered the amphiphilic monolayers to be homogeneously bent. In contrast, we assume a unit cell of an inverted mesophase to consist of flat fragments of monolayer. Hence, the unit cells of the HII and QII phases are represented by a hexagonal rod and a polyhedron, respectively. Our model is motivated by Turner and Gruner's X-ray diffraction reconstruction of structure of the HII phase. The only deformation of the amphiphilic monolayers we consider is tilt of the hydrocarbon chains with respect to the monolayer surface, determined by the packing constraints imposed in the mesophases. Applying our recent model for the elastic energy of tilt in liquid membranes [#!ref23!#], we show that: i) tilt accounts in a natural way for the frustration energy of mesophases resulting from filling by the hydrocarbon chains the corners of the unit cells, ii) the energy of tilt variation along the membrane surface is analogous to the bending energy. We compute the energetics of the HII, QIIsc and QIIfcc phases and obtain a hypothetical phase diagram in terms of the elastic constants of monolayers. Moreover, we calculate the structural dimensions of the mesophases. We verify the model showing that the obtained phase diagram describes the recent data for the glycolipids/water systems; the predicted dimensions of the QII phase are in accord with the measured values; the model treats quantitatively the structural features observed for the HII phase. Received: 9 February 1998 / Revised: 4 June 1998 / Accepted: 3 July 1998  相似文献   

8.
Tilt of hydrocarbon chains of lipid molecules with respect to membrane plane is commonly considered to characterize the internal structure of a membrane in the crystalline state. However, membranes in the liquid state can also exhibit tilt resulting from packing constraints imposed on the lipid molecules in diverse biologically relevant structures such as intermediates of membrane fusion, pores in lipid bilayers and others. We analyze the energetics of tilt in liquid membranes and its coupling with membrane bending. We consider three contributions to the elastic energy: constant tilt, variation of tilt along the membrane surface and membrane bending. The major assumption of the model is that the core of a liquid membrane has the common properties of an elastic continuum. We show that the variation of tilt and membrane bending are additive and that their energy contributions are determined by the same elastic coefficient: the Helfrich bending modulus, the modulus of Gaussian curvature and the spontaneous curvature known from previous studies of pure bending. The energy of a combined deformation of bending and varying tilt is determined by an effective tensor accounting for the two factors. In contrast, the deformation of constant tilt does not couple with bending and its contribution to the elastic energy is determined by an independent elastic constant. While accurate determination of this constant requires additional measurements, we estimate its value using a simplified approach. We discuss the relationships between the obtained elastic Hamiltonian of a membrane and the previous models of membrane elasticity. Received 10 February 2000 and Received in final form 19 June 2000  相似文献   

9.
We present an experimental study of the adsorption of hydrophobic highly charged polyelectrolytes on a neutral and hydrophobic surface, the air/water interface. The polymer was a randomly sulphonated polystyrene with charge fractions between 0.3 and 0.9 and the adsorbed layers were characterised by Langmuir through measurements, ellipsometry and X-ray reflectivity. The adsorption rate is always very slow and the resulting layers are very thin (< 3 nm). A maximum of adsorption with the charge fraction is observed which we relate to the conformation of the chains in solution. We show that adsorption is partially irreversible, strongly hysteretic and that the state of an adsorbed layer depends on its history. Received 16 June 2000  相似文献   

10.
The first stages of finger formation in a Hele-Shaw cell with lifting plates are investigated by means of linear stability analysis. At the beginning of lifting the square of the wavenumber of the dominant mode results to be proportional to the lifting rate (in qualitative agreement with the available experimental data), to the square of the length of the cell occupied by the more viscous fluid, and inversely proportional to the cube of the cell gap. This dependence on the cell parameters is significantly different of that found in the standard cell. On the other hand, our results show that the wavelength of the dominant mode decreases with lifting time, also in agreement with several experimental observations. Received: 16 April 1997 / Accepted: 23 October 1997  相似文献   

11.
As a drop of fluid is deposited on the surface of a miscible fluid (that we call the solvent), it undergoes a strong pulling due to its surface rupture and it acquires a kinetic energy independently of gravity. For the drop and the solvent being of the same fluid we observe a drop injection at an initial velocity which scales as the square root of the surface tension of the drop against air. Once injected, the drop develops a transverse instability giving rise to an expanding ring. Viscosity terminates the process and stops the ring. We show that the final ring height follows a scaling law whereas two asymptotical scaling regimes can be identified for the ring radius. Received 31 August 1999  相似文献   

12.
We investigate the dynamical behavior of lamellar phases in ternary amphiphilic systems of water, oil and amphiphile. The interaction between the amphiphilic monolayers is described by the steric interaction due to thermal fluctuations for uncharged, and by electrostatic interactions for charged systems. The dynamics of the system is determined by the hydrodynamics of the fluid layers. The basic parameters of our model are the viscosities of the two solvents, the average thicknesses of the oil and water layers, and the bending rigidity. The model allows to consider different monolayer interactions across the oil and water layers. Relaxation rates are calculated for arbitrary wave vectors parallel and perpendicular to the average monolayer plane. We find that there is a quite complex crossover behavior from a law for small parallel wave vectors to a law for large . We discuss the relevance of our result for the interpretation of dynamic light-scattering and neutron-spin-echo experiments for these systems. Received 7 December 1999  相似文献   

13.
Density functionals proposed in the literature for describing the behaviour of liquid helium at T =0 K are examined. In so doing, several properties of the ground states of free films of superfluid 4 He are calculated by using zero- and finite-range density functional theories and these results are compared to that computed with Monte Carlo simulations. We mainly focus the attention on the energy per particle of the slabs, the surface tension and the width of the liquid-vacuum interfaces, all as a function of the inverse of coverage. The largest differences are found in the case of the surface widths. Received 26 July 1999  相似文献   

14.
The surface shear viscosity of monolayers formed at the surface of water by adsorbed polyethyl- eneoxyde and by stearic acid is measured as a function of the surface pressure of the monolayer using a new surface viscometer. The principle of the viscometer is the measurement of the drag force on a circular disk undergoing a uniform translation at the water surface: a hydrodynamic model based on the lubrication approximation allows a calculation of the surface viscosities from the absolute measurement of the drag forces. Received: 26 August 1999  相似文献   

15.
16.
The linear compressibility of two-dimensional fatty acid mesophases has been determined by grazing incidence X-ray diffraction. The unit cell parameters of the , , , S and phases of behenic acid and of the phase of myristic acid were determined as a function of surface pressure and temperature. Surface pressure versus molecular area isotherms were reconstructed from these measurements, and the linear compressibility (relative distortion along a given direction for a two-dimensional isotropic applied stress) was determined both in the sample plane and in a plane normal to the aliphatic chain director (transverse plane). The linear compressibilities range over two orders of magnitude from 0.1 to 10 m/N and are distributed depending on their magnitude in 4 different sets which we are able to associate with different molecular mechanisms. The largest compressibilities (10 m/N) are observed in the tilted phases. They are apparently independent on the chain length and could be related to the reorganization of the headgroup hydrogen-bounded network, whose role should be revalued. Intermediate compressibilities are observed in phases with quasi long-range order (directions normal to the molecular tilt in the or phases, S phase, and could be related to the ordering of these phases. The lowest compressibilities are observed in the solid untilted phase and for one direction of the S and phases. They are similar to the compressibility of crystalline polymers and correspond to the interactions between methyl groups in the crystal. Finally, negative compressibilities are observed in the transverse plane for the and phases and can be traced to subtle reorganizations upon untilting. Received: 29 July 1997 / Revised: 14 October 1997 / Accepted: 23 October 1997  相似文献   

17.
The effect of the ratio of block lengths on the interfacial partitioning of poly(styrene-block-1,4 isoprene) diblock copolymers from their mixtures with polystyrene homopolymer melt is investigated utilizing a series of copolymers with almost constant molecular weight but different compositions. The concentration profile of the copolymer is measured directly using the nuclear reaction analysis technique; a segregation of the diblock is found at both the air/polymer surface, due to the lower surface energy of polyisoprene, and at the substrate/polymer interface. No significant effect of the block length ratio on the free-surface excess was observed. The block molecular weights have apparently led to dangling chain conformations in the non-overlapping mushroom and in the overlapping mushroom regimes whereas the brush regime was not accessible; no indications of a real border between the two former regimes was found. Received: 20 July 1998 / Received in final form and Accepted: 11 September 1998  相似文献   

18.
We investigate the bending of flexible charged membranes due to the presence of rigid rodlike macroions in the framework of the Debye-Hückel approximation. When the macroions are fixed in space at some distance from the bilayer the membrane bends towards them; we calculate the exact deformation profile. On the other hand a macroion which is adsorbed on the membrane causes a deflection of the bilayer. Finally, we consider swollen lamellar polyanion/charged-lipid complexes where the macroions are intercalated between charged lipid bilayers. We predict the occurrence of a double adsorption (pinching effect) of the macroion for sufficiently flexible membranes. Received: 9 February 1998 / Revised: 9 June 1998 / Accepted: 2 July 1998  相似文献   

19.
Motivated by numerous X-ray scattering studies of lamellar phases with membrane proteins, amphiphilic peptides, polymers, or other inclusions, we have determined the modifications of the classical Caillé law for a smectic phase as a function of the nature and concentration of inclusions added to it. Besides a fundamental interest on the behavior of fluctuating systems with inclusions, a precise characterization of the action of a given protein on a lipid membrane (anchoring, swelling, stiffening ...) is of direct biological interest and could be probed by way of X-ray measurements. As a first step we consider three different couplings involving local pinching (or swelling), stiffening or curvature of the membrane. In the first two cases we predict that independent inclusions induce a simple renormalization of the bending and compression moduli of the smectic phase. The X-ray experiments may also be used to probe correlations between inclusions. Finally we show that asymmetric coupling (such as a local curvature of the membrane) results in a modification of the usual Caillé law. Received 10 March 2000 and Received in final form 30 August 2000  相似文献   

20.
The primary stationary and oscillatory Bénard-Marangoni instability is investigated in a fluid layer of infinite horizontal extent, bounded below by a rigid plane and above by a deformable upper surface, subjected to a vertical temperature gradient. Since the viscosity is temperature-dependent the consequences of relaxing Oberbeck-Boussinesq approximation and free surface deformability are theoretically examined by means of small disturbance analysis. The problem has been solved numerically by the Taylor series expansion method. The results obtained confirm that when the free surface is undeformable, stationary convection develops in the form of polygonal cells, and oscillatory motion cannot be detected. When the surface deformability is considered, stationary convection sets in, either as a short-wavelength hexagonal instability or as a long-wavelengh mode or as both, and oscillatory convection is also possible. The stability threshold for the short-wavelength mode depends mainly on the viscosity variation while the long-wavelength mode is determined by the surface deformation. Numerically, it is found that the neutral oscillatory Marangoni numbers are only negative. When a variable-viscosity model is used the theoretical and experimental results are in better agreement. Received 15 May 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号