共查询到17条相似文献,搜索用时 31 毫秒
1.
2.
利用直径为100mm的Hopkinson压杆和薄圆形铝片作为波形整形器,用不同弹速径向冲击大理岩平台巴西圆盘来研究其动态拉伸强度.考虑了试样的尺寸大小及两个平台附近应力的时间不均匀性与空间不均匀性对实验结果的影响.分析了试样的最大应变率、破坏时间、破坏模式以及破坏过程中的载荷应变关系,得到了关于大理岩在高应变率下拉伸强度及弹性模量的一些结论.进一步又利用该装置径向冲击人字形切槽巴西圆盘试样,对试样的起裂时间进行了初步的研究,以便今后测试动态断裂韧度. 相似文献
3.
4.
SHPB冲击加载下四种岩石的复合型动态断裂实验研究 总被引:1,自引:0,他引:1
分别用绿砂岩、黄砂岩、灰砂岩、大理岩制作了三种几何相似的(φ80mm、φ122mm、φ155mm)中心直裂纹平台巴西圆盘(CSTFBD)试样;利用分离式霍普金森压杆加载,进行了I型和I-II型复合动态断裂实验,并由实验结合有限元分析得到了四种岩石材料的I、II型动态断裂韧度KId、KIId。研究表明:动态断裂韧度均存在尺寸效应,试样尺寸对I-II型复合比和纯II型加载角均会产生影响,复合比随尺寸的增大而减小,大尺寸试样II型加载的加载角比小尺寸试样的小。同时,由于负值的T应力显著减小了裂纹的起裂角,用广义最大拉应力准则预测的起裂角更符合实验结果。 相似文献
5.
6.
中心直裂纹平台巴西圆盘复合型动态断裂实验研究 总被引:2,自引:0,他引:2
制作了中心直裂纹平台巴西圆盘(cracked straight through flattened Brazilian disc-CSTFBD)试样,利用分离式霍普金森压杆(split Hopkinson pressure bar-SHPB)加载,进行了岩石纯Ⅰ型和复合型(Ⅰ+Ⅱ型)动态断裂实验。由于加载角(载荷方向与裂纹线的夹角)在制作试样时已经通过裂纹线与试样平台的位置关系确定,因此在实验中可以方便而准确地实施加栽。比较了纯Ⅰ型加载和复合型加载下压杆上记录的入射波、反射波和透射波的波形。采用实验与数值相结合的方法,将实验得到的动态载荷输入有限元程序,得到了纯Ⅰ型试样的动态断裂韧度和复合型试样的两种动态应力强度因子的时间历程。计算了加载角为15°的试样应力强度因子的复合比(KI(t)/KⅡ(t)),此计算值与文献结果吻合较好,验证了实验方法的有效性。 相似文献
7.
径向膨胀Al2O3陶瓷环动态拉伸破碎的实验研究 总被引:1,自引:0,他引:1
利用基于Hopkinson压杆技术设计的冲击膨胀环实验装置,开展了不同撞击速度下Al2O3陶瓷圆环的冲击拉伸和破碎实验研究.实验结果显示:随撞击速度增大,陶瓷环破碎产生的碎片数目增加,断口分析表明绝大多数的断口都是沿径向断裂,说明陶瓷环的破碎由膨胀环的径向拉伸应力产生;利用实测入射杆和透射杆的应力波形,获得陶瓷环发生破碎的时间和载荷信息,在一定的近似假定下,初步估算陶瓷环的表观动态拉伸强度介于160 Mpa和250 Mpa之间,比静态强度130 Mpa显著提高. 相似文献
8.
低阻抗多孔介质材料的SHPB实验技术 总被引:32,自引:5,他引:32
低阻抗多孔介质材料具有较低的密度和弹性波速,对其实施动态压缩实验具有一定的难度。本文在充分分析聚氨酯泡沫试件由于低阻抗所带来的各种影响因素后,提出了在SHPB装置上对低阻抗多孔介质材料进行动态测试时所应采取的半导体应变片技术及新的SHPB数据计算模式,初步解决了SHPB装置上对低阻抗多孔介质测试的难点。 相似文献
9.
利用直径为74mm 的分离式Hopkinson压杆径向冲击巴西圆盘试样,测试了不同聚苯乙烯(expandedpolystyrene,EPS)颗粒粒径、不同体积含量的EPS混凝土的动态拉伸性能。为了保证实验的可靠性,在试样和入射杆、透射杆之间加上精确设计的垫块,防止试样两端因应力集中而被压碎破坏;通过选择合适的整形器,保证试样有足够的时间达到应力均匀。并分析了EPS混凝土劈裂破坏形态。实验结果表明:EPS混凝土的劈裂强度随应力率的增大而增大;在EPS体积含量较低的EPS混凝土中,EPS混凝土的劈裂强度表现出一定的粒子尺寸效应,随EPS颗粒体积含量的增加,这一现象逐渐消失。 相似文献
10.
采用传统分离式Hopkinson压杆进行M型试样的动态拉伸实验,可避免试样与杆的连接问题,但该方法并未得到发展和验证。本文中,采用有限元数值分析和实验方法,对M型试样动态拉伸实验进行分析和改进。结果表明:(1)改进的封闭M型试样,可以增强试样整体刚度,有效减少试样畸变引起的附加弯矩对拉伸标段的影响,方便通过Hopkinson压杆加载实现一维拉伸变形;(2)采用试样刚度系数修正法,可消除M型试样整体结构的弹性变形对测试的影响,精确获得试样拉伸标段的塑性应变;(3)高加载率下,建议采用波形整器加载,可显著减少试样结构引起的载荷震荡现象、改善两端的应力平衡,获得准确的动态拉伸应力应变曲线,实现5 900 s?1甚至更高应变率下的动态拉伸实验。研究方法可为M型试样拉伸实验设计和应用提供参考。 相似文献
11.
12.
冲击载荷下混凝土材料的动态本构关系 总被引:64,自引:5,他引:59
利用改装的杆径为 74mm的直锥变截面式大尺寸Hopkinson压杆对混凝土材料进行冲击压缩实验 ,系统研究了混凝土的应变率硬化效应 ,采用一种新的方法损伤冻结法对混凝土材料在冲击载荷下的损伤软化效应进行了系统研究 ,给出了冲击载荷下混凝土的损伤演化方程 ;在对数据进行合理分析的基础上 ,结合粘弹性本构理论 ,得到混凝土材料的损伤型线性粘弹性本构关系。 相似文献
13.
14.
傅立叶弥散分析在冲击拉伸和冲击压缩试验中的应用 总被引:1,自引:1,他引:0
将傅立叶弥散分析方法和程序(FFTDSP)应用于冲击拉伸和冲击压缩试验中,分析了输入杆和输出杆中波的弥散效应对试验结果的影响。带有弥散修正的试验结果表明,由于入射脉冲产生方式不同,冲击压缩试验系统中传播的应力波带有显著的弥散效应,而间接杆杆型冲击拉伸试验系统中传播的应力波的弥散效应一般较小。 相似文献
15.
16.
在测试材料动态力学性能时,直接撞击式霍布金森压杆(direct impact Hopkinson pressure bar,DIHPB)实验系统相对于分离式霍布金森压杆(split Hopkinson pressure bar,SHPB),往往能获得更高的应变率。本文中采用一种新型双剪切试样,在DIHPB系统下对603钢进行了动态剪切测试。获得了603钢在应变率1 500~33 000 s−1的剪应力-剪应变曲线,并与SHPB系统下的测试结果进行了对比。结果表明,由两种测试方法获得的流动应力具有较好的一致性,但曲线的上升沿存在明显区别。采用数值模拟对DIHPB方法的准确性进行了验证,并对该实验方法的适用条件进行了分析。采用DIHPB方法,可以观察到603钢的流动应力存在明显的应变率效应,但在较高的加载速度下材料的失效应力随着加载速度的增加而呈降低趋势。
相似文献