首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以罗丹明6G和水合肼为原料,先制备罗丹明6G酰肼,接着在乙醇中滴加少量冰醋酸做催化剂后与2,5-二甲氧基苯甲醛反应,合成了一种新型的pH荧光分子探针(RGSBD),进行了结构表征及荧光性能研究。结果表明,原本在氢离子浓度较低,即体系pH较高时(pH≥4.0),探针RGSBD内酰胺螺环闭环导致不显示荧光并且无色,然而在氢离子浓度较大即体系pH较低时(pH<4.0)时,其内酰胺螺环闭环产生了明显的颜色变化,发出强烈的荧光。pH 1.9时,探针的荧光强度达到最大,最大荧光峰发生显著的红移。进一步研究表明,探针RGSBD的荧光峰强度差值与pH在1.9~3.2范围内呈良好的线性关系,探针RGSBD识别H^+的选择性高,稳定性与可逆性强,可发展用作生物体内pH荧光传感材料。  相似文献   

2.
The fluorescence resonance energy transfer (FRET) in a lipid bilayer system containing two different donors and one common acceptor at below and above transition temperature has been studied and all the FRET parameters are analyzed using steady state and time-resolved fluorescence spectroscopy. Using dynamic light scattering measurement, we have followed the process of preparation of small unilamellar vesicles, and by following the FRET parameters of C-153-Rh6G and C-151-Rh6G pairs inside SUVs at 16 °C and 33 °C (T(m) = 23.9 °C) we have noticed that there is greater effect of temperature on the FRET parameters in case of the C-153-Rh6G pair than that of the C-151-Rh6G pair. Finally we have concluded that this difference is due to their different location inside the lipid bilayer in which fluidity of the long alkyl chain markedly affects the FRET parameters for C-153-Rh6G pair embedded inside a small unilamellar vesicle of size 20-50 nm.  相似文献   

3.
本文在合成水溶性巯基乙酸修饰的CdTe量子点的基础上,研究了CdTe量子点与罗丹明6G之间的荧光共振能量转移.实验结果表明:构建的CdTe量子点(供体)-罗丹明6G(受体)荧光共振能量转移体系在磷酸盐缓冲溶液中有较好的转移效果.当磷酸缓冲溶液pH值为7.4,NaCl浓度为1.0 mol/L时,构建的CdTe量子点-罗丹...  相似文献   

4.
利用荧光素(Fluorescein)对罗丹明6G(Rhodamine 6G)进行修饰,得到荧光分子探针R6G-Flu杂化物.此探针可特异性识别Al3+,检出限可低至10-8 mol/L级;向含有探针分子的溶液中加入Al3+后,溶液的颜色由无色变为粉色,并且在紫外灯下发出绿色荧光,可实现肉眼对10 μmol/L Al3+的定性检测.考察了不同pH值下R6G-Flu的荧光性质. 结果表明,此探针还可用于酸性范围(pH 3.00~6.00)和碱性范围(pH 8.00~10.50)内pH值的精确检测.实验结果表明,R6G-Flu是一种可用于Al3+和pH值检测的双功能荧光分子探针.  相似文献   

5.
采用巯基化合物修饰的CdTe量子点构建了量子点(供体)-罗丹明6G(受体)荧光共振能量转移体系, 研究了CdTe量子点与牛血清白蛋白(BSA)的相互作用. 结果表明, CdTe量子点与BSA相互作用后提高了CdTe量子点-罗丹明6G 体系的荧光共振能量转移(FRET)效率, 减小了CdTe量子点和罗丹明6G分子间的距离(r), 证实BSA是通过其色氨酸(Trp)残基与CdTe量子点表面金属发生配位作用而直接结合到量子点表面的.  相似文献   

6.
A magnetic, sensitive, and selective fluorescence resonance energy transfer (FRET) probe for detection of thiols in living cells was designed and prepared. The FRET probe consists of an Fe(3)O(4) core, a green-luminescent phenol formaldehyde resin (PFR) shell, and Au nanoparticles (NPs) as FRET quenching agent on the surface of the PFR shell. The Fe(3)O(4) NPs were used as the core and coated with green-luminescent PFR nanoshells by a simple hydrothermal approach. Au NPs were then loaded onto the surface of the PFR shell by electric charge absorption between Fe(3)O(4)@PFR and Au NPs after modifying the Fe(3)O(4)@PFR nanocomposites with polymers to alter the charge of the PFR shell. Thus, a FRET probe can be designed on the basis of the quenching effect of Au NPs on the fluorescence of Fe(3)O(4)@PFR nanocomposites. This magnetic and sensitive FRET probe was used to detect three kinds of primary biological thiols (glutathione, homocysteine, and cysteine) in cells. Such a multifunctional fluorescent probe shows advantages of strong magnetism for sample separation, sensitive response for sample detection, and low toxicity without injury to cellular components.  相似文献   

7.
Abstract –A photochemical kinetic method of measuring small values of efficiency of fluorescence resonance energy transfer (FRET) between special probes is proposed. The FRET efficiency ( Ω ) is determined from kinetics of the photochemical reaction of the energy acceptor sensitized by FRET from the energy donor. The choice of an appropriate donor-acceptor pair permits the minimization of background reactions. Application of the method is demonstrated by the detection of FRET from 2,5-W.s(5- tert -butyl-2-benzoxasolyl)thiophen (BBOT) to acridine orange (AO) in phospholipid vesicles. Photobleaching of AO in the presence of CBr4 was applied as a photochemical reaction of the acceptor. The reaction was monitored by steady-state fluorescence measurements. The FRET measurements were carried out by the proposed technique when the probe/lipid ratio and Ω were as small as 1.1 times 10-5 M/M and 0.0017, respectively. Under these conditions, the rate constant of AO photobleaching was increased by 26% as compared with that of the reference sample without BBOT. The results suggest that applications of the technique may be useful in the study of the membrane topography.  相似文献   

8.
Abstract: A photochemical kinetic method of measuring small values of efficiency of fluorescence resonance energy transfer (FRET) between special probes is proposed. The FRET efficiency (ω) is determined from kinetics of the photochemical reaction of the energy acceptor sensitized by FRET from the energy donor. The choice of an appropriate donor-acceptor pair permits the minimization of background reactions. Application of the method is demonstrated by the detection of FRET from 2,5- bis (5- tert -butyl-2-benzoxasolyl)thiophen (BBOT) to acridine orange (AO) in phospholipid vesicles. Photobleaching of AO in the presence of CBr4 was applied as a photochemical reaction of the acceptor. The reaction was monitored by steady-state fluorescence measurements. The FRET measurements were carried out by the proposed technique when the probe/lipid ratio and ω were as small as 1.1 × 10−5 M/M and 0.0017, respectively. Under these conditions, the rate constant of AO photobleaching was increased by 26% as compared with that of the reference sample without BBOT. The results suggest that applications of the technique may be useful in the study of the membrane topography.  相似文献   

9.
The thioglycolic acid-functionalized CdTe quantum dots (QDs) were synthesized in aqueous solution using safe and low-cost inorganic salts as precursors. Fluorescence resonance energy transfer (FRET) system was constructed between CdTe QDs (donor) and butyl-rhodamine B (BRB) (acceptor) in the presence of cetyltrimethylammonium bromide (CTMAB). CTMAB micelles formed in water reduced the distance between the donor and the acceptor significantly and thus improved the FRET efficiency, which resulted in an obvious fluorescence enhancement of the acceptor. Several factors which impacted the fluorescence spectra of the FRET system were studied. The energy transfer efficiency (E) and the distance (r) between CdTe and BRB were obtained. The feasibility of the prepared FRET system as fluorescence probe for detecting Hg(II) in aqueous solution was demonstrated. At pH 6.60, a linear relationship could be established between the quenched fluorescence intensity of BRB and the concentration of Hg(II) in the range of 0.0625-2.5mumolL(-1). The limit of detection was 20.3nmolL(-1). The developed method was proved to be sensitive and repeatable to detect Hg(II) in a wide range in aqueous solutions.  相似文献   

10.
光谱法测定伊曲康唑与牛血清和人血清白蛋白相互作用   总被引:3,自引:0,他引:3  
用荧光光谱和紫外吸收光谱法, 在pH=7.4±0.1的0.1 mol·L-1磷酸缓冲溶液中, 研究了伊曲康唑与牛血清白蛋白(BSA)和人血清白蛋白(HSA)的相互作用. 实验结果表明, 伊曲康唑与牛血清白蛋白和人血清白蛋白作用的猝灭常数均随着温度的升高而降低, 伊曲康唑可以有规律地使血清白蛋白内源荧光猝灭, 其猝灭机理可认为是伊曲康唑与白蛋白形成复合物的静态猝灭. 获得了在不同温度下, 伊曲康唑与血清白蛋白作用的结合常数以及△G、△H和△S等热力学参数. 根据所得结果可推断伊曲康唑与白蛋白的作用力主要为疏水作用力, 同时, 利用荧光共振能量转移理论(FRET)计算得出了伊曲康唑与白蛋白结合位置的距离d. 而且, 利用同步荧光光谱和紫外光谱揭示了该反应中蛋白的结构和其微环境的变化.  相似文献   

11.
The fluorescence resonance energy transfer (FRET) from tryptophan (Trp) to folic acid (FA) in aqueous sodiumdodecyl sulphate, cetyltrimethyl ammonium bromide, and Brij-35 as well as deionised water was investigated using steady state and time resolved fluorescence techniques. The data obtained from steady state fluorescence spectral studies and time resolved measurement indicated that the FRET from Trp to FA occurred most effectively in aqueous sodium dodecyl sulphate micellar solutions. The distance between Trp and FA were evaluated. Binding constant, number of binding sites and thermodynamic parameters were determined for Trp-FA interactions in deionised water. The values of the thermodynamic parameters suggest that the hydrophobic forces and hydrogen bonding are the key interacting forces between Trp-FA interaction.  相似文献   

12.
To explore the effects of microenvironmental adjustments on fluorescence, a pH-sensitive nano-composite system based on fluorescence resonance energy transfer (FRET) was constructed. The model system included a modified triblock copolymer (polyhistidine-b-polyethylene glycol-b-polycaprolactone) and gold nanoparticles. A near-infrared dye was used as the donor, and spectrally matched gold nanorods, attached after C-terminus modification with α-lipoic acid, were used as the receptor to realize control of the FRET effect over the fluorescence intensity for two polymer configurational changes (i.e., “folded” and “stretched” states) in response to pH. After synthesis and characterization, we investigated the self-assembly behavior of the system. Analysis by quartz crystal microbalance revealed the pH sensitivity of the polymer, which exhibited “folding” and “stretching” states with changes in pH, providing a structural basis for the FRET effect. Fluorescence spectrophotometry investigations also revealed the regulatory impact of the assembled system on fluorescence.  相似文献   

13.
A highly sensitive molecularly imprinted fluorescent sensor for rhodamine 6G (R6G) was fabricated using carbon dot (CD)-embedded mesoporous organosilica as scaffold through a one-pot self-assembly process. The embedded CDs and R6G exhibit efficient fluorescence resonance energy transfer (FRET) due to the overlap between the emission band of energy donor CDs and the excitation band of energy acceptor R6G, as well as their nanometer-sized distance. After acid treatment, molecularly imprinted silica for recognition of R6G with excellent performance in terms of sensitivity and selectivity was obtained, being attributed to the FRET effect between CDs and R6G and the spatial recognition ability for R6G.  相似文献   

14.
New fluorescent systems for photocatalysis, sensors, labeling, etc., are in great demand. Amphiphilic ones are of special interest since they can form functional colloidal systems that can be used in aqueous solutions. A new macrocycle platform for click chemistry and its adduct with o-propargylfluoresceine was synthesized and characterized using modern physical techniques. Nanosized solid lipid nanoparticles (SLNs) from the calixarene—fluoresceine adduct were synthesized through the solvent injection technique and well-characterized in the solution and in solid state using light-scattering and microscopy methods. The maximum fluorescence intensity of the SLNs was found to be in the pH range from 7 to 10. The Förster resonance energy transfer (FRET) efficiency from SLNs to rhodamine 6g was found to be 97.8%. Finally, pure SLNs and the FRET system SLNs—Rh6G were tested in model photocatalytic ipso oxidative hydroxylation of phenylboronic acid under blue LED light. The SLNs—Rh6G system was found to be the best, giving an almost qualitative phenol yield, which was shown by HPLC-UV analysis.  相似文献   

15.
设计、合成了一类新型谷胱甘肽(glutathione,GSH)和凋亡酶-3(Caspase-3)响应的环肽分子荧光探针.该类探针主要由能量共振转移(FRET)分子荧光对、Caspase-3特异性识别多肽序列和GSH响应双硫键组成,分为不含穿膜肽序列(CP)和包含穿膜肽序列(cp CP)的两种不同环肽分子荧光探针.2种环肽分子荧光探针均能实现在GSH和Caspase-3同时存在情况下的精确成像,同时具有良好的响应性、特异性和高信噪比.该类环肽分子荧光探针在细胞培养环境中具有良好的稳定性和生物相容性.利用该探针,可以实现对星形孢菌素(STS)诱发的细胞凋亡进行实时、原位的成像监测,并对抗肿瘤药物阿霉素(DOX)和顺铂(cisplatin)诱导的细胞凋亡进行成像.这种具有多重响应并能用于精确成像的分子荧光探针将极大地促进疾病的精确诊断.  相似文献   

16.
G‐tetraplex induced fluorescence resonance energy transfer (FRET) within telomeric repeat sequences has been studied using a nucleoside‐tethered FRET pair embedded in the human telomeric G‐quadruplex forming sequence (5′‐A GGG TT Py A GGG TT Per A GGG TTA GGG‐3′, Py=pyrene, Per=perylene). Conformational change from a single strand to an anti‐parallel G‐quadruplex leads to FRET from energy donor ( Py A ) to acceptor ( Per A ). The distance between the FRET donor/acceptor partners was controlled by changing the number of G‐quartet spacer units. The FRET efficiency decreases with increase in G‐quartet units. Overall findings indicate that this could be further used for the development of FRET‐based sensing and measurement techniques.  相似文献   

17.
A new fluorescent peptidyl chemosensor based on the mercury binding MerP protein with fluorescence resonance energy transfer (FRET) capabilities has been synthesized via Fmoc solid-phase peptide synthesis. The metal chelating unit, which is flanked by the fluorophores tryptophan (donor) and dansyl (acceptor), contains amino acids from MerP's metal binding loop (sequence: dansyl-Gly-Gly-Thr-Leu-Ala-Val-Pro-Gly-Met-Thr-Cys-Ala-Ala-Cys-Pro-Ile-Thr-Val-Lys-Lys-Gly-Gly-Trp-CONH(2)). A FRET enhancement or 'turn-on' response was observed for Hg(2+) as well as for Zn(2+), Cd(2+) and Ag(+) in a pure aqueous solution at pH 7.0. The emission intensity of the acceptor was used to monitor the concentration of these metals ions with detection limits of 280, 6, 103 and 496 microg L(-1), respectively. No response was observed for the other transition, alkali and alkaline earth metals tested. The fluorescent enhancement observed is unique for Hg(2+) since this metal generally quenches fluorescence. The acceptor fluorescence increase resulting from metal binding-induced FRET suggests a sensor that is inherently more sensitive than one based on quenching by the binding event.  相似文献   

18.
Li W  Yang X  Wang K  Tan W  Li H  Ma C 《Talanta》2008,75(3):770-774
A sensitive method for rapid angiogenin (Ang) detection based on fluorescence resonance energy transfer (FRET) has been described. A dual-labeled probe based on high affinity aptamer for Ang was constructed. As donor and acceptor, 6-carboxyfluorescein (FAM) and 6-carboxy-tetramethylrhodamine (TMR) were labeled at 5'- and 3'-termini of the aptamer probe, respectively. The dual-labeled probe showed obvious fluorescence changes due to the specific binding between aptamer and Ang. By monitoring the fluorescence intensity of donor and acceptor, quantitative Ang detection could be achieved. This assay is highly specific and sensitive, with a detection limit of 2.0 x 10(-10) mol L(-1) and a linear range of 5.0 x 10(-10) to 4.0 x 10(-8) mol L(-1) Ang. Ang in serum samples of health and lung cancer were also detected.  相似文献   

19.
The pH values of lysosomes in cancer cells is slightly lower than that in normal cells, which can be used to distinguish cancer cells from normal cells. According to this, a naphthalimide-rhodamine based fluorescent probe(hereafter referred to as RBN) with a pK_a of 4.20 was designed and synthesized for ratiometric sensing of cellular pH via fluorescence resonance energy transfer(FRET), which can respond to different pH precisely through ratiometric fluorescence intensity(Ⅰ_(577)/Ⅰ_(540)). RBN can be employed to distinguish cancer cells from normal cells on the basis of different fluorescent response, in particular, RBN showed excellent water solubility and low cell toxicity, all these are quite significant for potential application in cancer diagnose and therapy.  相似文献   

20.
The interaction between a bioactive molecule, 3-acetyl-4-oxo-6,7-dihydro-12H indolo-[2,3-a] quinolizine (AODIQ), with human serum albumin (HSA) has been studied using steady-state absorption and fluorescence techniques. A 1:1 complex formation has been established and the binding constant (K) and free energy change for the process have been reported. The AODIQ-HSA complex results in fluorescence resonance energy transfer (FRET) from the tryptophan moiety of HSA to the probe. The critical energy-transfer distance (R 0) for FRET and the Stern-Volmer constant (K sv) for the fluorescence quenching of the donor in the presence of the acceptor have been determined. Importantly, K SV has been shown to be equal to the binding constant itself, implying that the fluorescence quenching arises only from the FRET process. The study suggests that the donor and the acceptor are bound to the same protein at different locations but within the quenching distance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号